Department of Physics, Bishop Heber College, Affiliated to Bharathidasan University, Tiruchirappalli 620017, Tamil Nadu, India.
Department of Biosciences, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai-602105, Tamilnadu, India.
Int J Pharm. 2022 Nov 5;627:122248. doi: 10.1016/j.ijpharm.2022.122248. Epub 2022 Sep 28.
In this work, Zn and Mg substituted β-tricalcium phosphate/functionalized multiwalled carbon nanotube (f-MWCNT) nanocomposites were prepared by the co-precipitation method. The structural, vibrational, morphological and biological properties of the prepared nanocomposites were studied. The structural study revealed that the increase of Zn concentration shifts the β-tricalcium phosphate planes towards higher angle. Morphological analysis confirmed the formation of hexagonal-shaped particles after substitution of Zn. The particle size of the nanoparticles decreased with the increase of Zn concentration. XPS analysis clearly showed the presence of Zn, Mg, P, Ca, O and C. The Zn (5%) rich nanocomposites have better antibiofilm activity compared to 2% of zinc substituted composite. Also, it has been proven that the prepared nanocomposites have the ability to enhance the bioactivity of commercial antibiotics by means of a decrease in drug resistance. Finally, this study acted as a pioneer to improve drug efficiency and reduced the biofilm formation of certain medically important bacteria. The in-vitro cell viability and anti-biofilm results of zinc (5%) rich nanocomposite confirmed that prepared nanocomposite has biocompatible and enhanced anti-biofilm property, which will be beneficial candidate for biomedical applications.
在这项工作中,通过共沉淀法制备了 Zn 和 Mg 取代的 β-磷酸三钙/功能化多壁碳纳米管(f-MWCNT)纳米复合材料。研究了制备的纳米复合材料的结构、振动、形态和生物学性质。结构研究表明,Zn 浓度的增加会使 β-磷酸三钙的平面向更高的角度移动。形态分析证实,Zn 取代后形成了六方形状的颗粒。纳米颗粒的粒径随 Zn 浓度的增加而减小。XPS 分析清楚地表明存在 Zn、Mg、P、Ca、O 和 C。与 2%锌取代的复合材料相比,富含 Zn(5%)的纳米复合材料具有更好的抗生物膜活性。此外,已经证明,通过降低耐药性,制备的纳米复合材料具有增强商业抗生素生物活性的能力。最后,这项研究作为提高药物效率和减少某些医学上重要细菌生物膜形成的先驱。富含锌(5%)的纳米复合材料的体外细胞活力和抗生物膜结果证实,所制备的纳米复合材料具有生物相容性和增强的抗生物膜特性,这将是生物医学应用的有益候选者。