Bo Wen-Bo, Wang Ru-Ru, Liu Wei, Wang Yue-Yue
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.
Chaos. 2022 Sep;32(9):093104. doi: 10.1063/5.0091738.
The symmetry breaking of solitons in the nonlinear Schrödinger equation with cubic-quintic competing nonlinearity and parity-time symmetric potential is studied. At first, a new asymmetric branch separates from the fundamental symmetric soliton at the first power critical point, and then, the asymmetric branch passes through the branch of the fundamental symmetric soliton and finally merges into the branch of the fundamental symmetric soliton at the second power critical point, while the power of the soliton increases. This leads to the symmetry breaking and double-loop bifurcation of fundamental symmetric solitons. From the power-propagation constant curves of solitons, symmetric fundamental and tripole solitons, asymmetric solitons can also exist. The stability of symmetric fundamental solitons, asymmetric solitons, and symmetric tripole solitons is discussed by the linear stability analysis and direct simulation. Results indicate that symmetric fundamental solitons and symmetric tripole solitons tend to be stable with the increase in the soliton power. Asymmetric solitons are unstable in both high and low power regions. Moreover, with the increase in saturable nonlinearity, the stability region of fundamental symmetric solitons and symmetric tripole solitons becomes wider.
研究了具有立方-五次竞争非线性和宇称-时间对称势的非线性薛定谔方程中孤子的对称性破缺。首先,在第一个功率临界点处,一个新的非对称分支从基本对称孤子分离出来,然后,该非对称分支穿过基本对称孤子的分支,最终在第二个功率临界点处合并到基本对称孤子的分支中,同时孤子的功率增加。这导致了基本对称孤子的对称性破缺和双环分岔。从孤子、对称基本孤子和偶极孤子的功率-传播常数曲线可知,非对称孤子也可以存在。通过线性稳定性分析和直接模拟讨论了对称基本孤子、非对称孤子和对称偶极孤子的稳定性。结果表明,随着孤子功率的增加,对称基本孤子和对称偶极孤子趋于稳定。非对称孤子在高功率和低功率区域都是不稳定的。此外,随着饱和非线性的增加,基本对称孤子和对称偶极孤子的稳定区域变宽。