Li Pengfei, Mihalache Dumitru, Malomed Boris A
Department of Physics, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Bucharest 077125, Romania.
Philos Trans A Math Phys Eng Sci. 2018 Jul 28;376(2124). doi: 10.1098/rsta.2017.0378.
We report results for solitons in models of waveguides with focusing or defocusing saturable nonlinearity and a parity-time ([Formula: see text])-symmetric complex-valued external potential of the Scarf-II type. The model applies to the nonlinear wave propagation in graded-index optical waveguides with balanced gain and loss. We find both fundamental and multipole solitons for both focusing and defocusing signs of the saturable nonlinearity in such [Formula: see text]-symmetric waveguides. The dependence of the propagation constant on the soliton's power is presented for different strengths of the nonlinearity saturation, The stability of fundamental, dipole, tripole and quadrupole solitons is investigated by means of the linear-stability analysis and direct numerical simulations of the corresponding (1+1)-dimensional nonlinear Schrödinger-type equation. The results show that the instability of the stationary solutions can be mitigated or completely suppressed, increasing the value of This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 1)'.
我们报告了在具有聚焦或散焦饱和非线性以及Scarf-II型奇偶时间([公式:见正文])对称复值外部势的波导模型中孤子的结果。该模型适用于具有平衡增益和损耗的渐变折射率光波导中的非线性波传播。我们在这种[公式:见正文]对称波导中发现了饱和非线性聚焦和散焦情况下的基孤子和多极孤子。给出了不同非线性饱和强度下传播常数对孤子功率的依赖性。通过对相应的(1 + 1)维非线性薛定谔型方程进行线性稳定性分析和直接数值模拟,研究了基孤子、偶极孤子、三极孤子和四极孤子的稳定性。结果表明,通过增加[具体值]可以减轻或完全抑制定态解的不稳定性。本文是主题为“非平衡态物质中的耗散结构:来自化学、光子学和生物学(第1部分)”的一部分。