Suppr超能文献

带出生和死亡的单纯形传染病模型。

Simplicial epidemic model with birth and death.

机构信息

School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

出版信息

Chaos. 2022 Sep;32(9):093144. doi: 10.1063/5.0092489.

Abstract

In this paper, we propose a simplicial susceptible-infected-susceptible (SIS) epidemic model with birth and death to describe epidemic spreading based on group interactions, accompanying with birth and death. The site-based evolutions are formulated by the quenched mean-field probability equations for each site, which is a high-dimensional differential system. To facilitate a theoretical analysis of the influence of system parameters on dynamics, we adopt the mean-field method for our model to reduce the dimension. As a consequence, it suggests that birth and death rates influence the existence and stability of equilibria, as well as the appearance of a bistable state (the coexistence of the stable disease-free and endemic states), which is then confirmed by extensive simulations on empirical and synthetic networks. Furthermore, we find that another type of the bistable state in which a stable periodic outbreak state coexists with a steady disease-free state also emerges when birth and death rates and other parameters satisfy the certain conditions. Finally, we illustrate how the birth and death rates shift the density of infected nodes in the stationary state and the outbreak threshold, which is also verified by sensitivity analysis for the proposed model.

摘要

在本文中,我们提出了一个带有出生和死亡的单纯易感染-易感染(SIS)传染病模型,以描述基于群体相互作用的传染病传播,同时伴有出生和死亡。基于站点的演化是通过每个站点的淬火平均场概率方程来描述的,这是一个高维微分系统。为了便于从理论上分析系统参数对动力学的影响,我们采用平均场方法对模型进行降维。结果表明,出生率和死亡率会影响平衡点的存在和稳定性,以及双稳态(稳定的无病和流行状态共存)的出现,这通过对经验和合成网络的广泛模拟得到了证实。此外,我们还发现,当出生率和死亡率以及其他参数满足一定条件时,还会出现另一种双稳态状态,其中一个稳定的周期性爆发状态与稳定的无病状态共存。最后,我们说明了出生率和死亡率如何改变稳定状态下感染节点的密度和爆发阈值,这也通过对所提出模型的敏感性分析得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验