Suppr超能文献

单纯形复形上的两个竞争单纯形不可逆转流行病。

Two competing simplicial irreversible epidemics on simplicial complex.

机构信息

School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.

College of Computer Science, Sichuan University, Chengdu 610065, China.

出版信息

Chaos. 2022 Sep;32(9):093135. doi: 10.1063/5.0100315.

Abstract

Higher-order interactions have significant implications for the dynamics of competing epidemic spreads. In this paper, a competing spread model for two simplicial irreversible epidemics (i.e., susceptible-infected-removed epidemics) on higher-order networks is proposed. The simplicial complexes are based on synthetic (including homogeneous and heterogeneous) and real-world networks. The spread process of two epidemics is theoretically analyzed by extending the microscopic Markov chain approach. When the two epidemics have the same 2-simplex infection rate and the 1-simplex infection rate of epidemic A ( ) is fixed at zero, an increase in the 1-simplex infection rate of epidemic B ( ) causes a transition from continuous growth to sharp growth in the spread of epidemic B with . When > 0, the growth of epidemic B is always continuous. With the increase of , the outbreak threshold of epidemic B is delayed. When the difference in 1-simplex infection rates between the two epidemics reaches approximately three times, the stronger side obviously dominates. Otherwise, the coexistence of the two epidemics is always observed. When the 1-simplex infection rates are symmetrical, the increase in competition will accelerate the spread process and expand the spread area of both epidemics; when the 1-simplex infection rates are asymmetrical, the spread area of one epidemic increases with an increase in the 1-simplex infection rate from this epidemic while the other decreases. Finally, the influence of 2-simplex infection rates on the competing spread is discussed. An increase in 2-simplex infection rates leads to sharp growth in one of the epidemics.

摘要

高阶相互作用对竞争传染病传播的动态有重大影响。本文提出了一个在高阶网络上的两个单纯不可逆转传染病(即易感-感染-移除传染病)竞争传播模型。单纯复形基于合成(包括同质和异质)和真实网络。通过扩展微观马尔可夫链方法,从理论上分析了两个传染病的传播过程。当两个传染病具有相同的 2-单纯形感染率,且传染病 A 的 1-单纯形感染率 ( )固定为 0 时,传染病 B 的 1-单纯形感染率 ( )的增加会导致传染病 B 的传播从连续增长转变为急剧增长,其中 。当 > 0 时,传染病 B 的增长总是连续的。随着 的增加,传染病 B 的爆发阈值会延迟。当两个传染病的 1-单纯形感染率差异约为三倍时,较强的一方明显占主导地位。否则,总是会观察到两种传染病的共存。当 1-单纯形感染率对称时,竞争的增加会加速传播过程并扩大两种传染病的传播范围;当 1-单纯形感染率不对称时,随着来自该传染病的 1-单纯形感染率的增加,一种传染病的传播范围会增加,而另一种传染病的传播范围会减少。最后,讨论了 2-单纯形感染率对竞争传播的影响。2-单纯形感染率的增加会导致其中一种传染病的急剧增长。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验