Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
J Chem Phys. 2022 Sep 28;157(12):125102. doi: 10.1063/5.0095910.
Nuclear Magnetic Resonance (NMR) is a tool of choice to characterize molecular motions. In biological macromolecules, pico- to nanosecond motions, in particular, can be probed by nuclear spin relaxation rates, which depend on the time fluctuations of the orientations of spin interaction frames. For the past 40 years, relaxation rates have been successfully analyzed using the Model-Free (MF) approach, which makes no assumption on the nature of motions and reports on the effective amplitude and timescale of the motions. However, obtaining a mechanistic picture of motions from this type of analysis is difficult at best, unless complemented with molecular dynamics (MD) simulations. In spite of their limited accuracy, such simulations can be used to obtain the information necessary to build explicit models of motions designed to analyze NMR relaxation data. Here, we present how to build such models, suited in particular to describe motions of methyl-bearing protein side chains and compare them with the MF approach. We show on synthetic data that explicit models of motions are more robust in the presence of rotamer jumps which dominate the relaxation in methyl groups of protein side chains. We expect this work to motivate the use of explicit models of motion to analyze MD and NMR data.
核磁共振(NMR)是一种用于描述分子运动的首选工具。在生物大分子中,可以通过核自旋弛豫率来探测皮秒到纳秒级的运动,而弛豫率取决于自旋相互作用框架方向的时间波动。在过去的 40 年中,已经成功地使用无模型(MF)方法对弛豫率进行了分析,该方法对运动的性质没有任何假设,并报告了运动的有效幅度和时间尺度。然而,除非结合分子动力学(MD)模拟,否则从这种类型的分析中获得运动的机制图是非常困难的。尽管它们的准确性有限,但此类模拟可用于获取构建旨在分析 NMR 弛豫数据的运动显式模型所需的信息。在这里,我们展示了如何构建此类模型,特别是适用于描述含甲基的蛋白质侧链运动,并将其与 MF 方法进行比较。我们在合成数据上表明,在主导蛋白质侧链甲基弛豫的构象跃迁存在的情况下,运动的显式模型更稳健。我们希望这项工作能够鼓励使用运动显式模型来分析 MD 和 NMR 数据。