Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany.
J Chem Phys. 2024 Mar 14;160(10). doi: 10.1063/5.0188416.
Nuclear magnetic resonance (NMR) relaxation experiments shine light onto the dynamics of molecular systems in the picosecond to millisecond timescales. As these methods cannot provide an atomically resolved view of the motion of atoms, functional groups, or domains giving rise to such signals, relaxation techniques have been combined with molecular dynamics (MD) simulations to obtain mechanistic descriptions and gain insights into the functional role of side chain or domain motion. In this work, we present a comparison of five computational methods that permit the joint analysis of MD simulations and NMR relaxation experiments. We discuss their relative strengths and areas of applicability and demonstrate how they may be utilized to interpret the dynamics in MD simulations with the small protein ubiquitin as a test system. We focus on the aliphatic side chains given the rigidity of the backbone of this protein. We find encouraging agreement between experiment, Markov state models built in the χ1/χ2 rotamer space of isoleucine residues, explicit rotamer jump models, and a decomposition of the motion using ROMANCE. These methods allow us to ascribe the dynamics to specific rotamer jumps. Simulations with eight different combinations of force field and water model highlight how the different metrics may be employed to pinpoint force field deficiencies. Furthermore, the presented comparison offers a perspective on the utility of NMR relaxation to serve as validation data for the prediction of kinetics by state-of-the-art biomolecular force fields.
核磁共振(NMR)弛豫实验在皮秒到毫秒的时间尺度上揭示了分子系统的动力学。由于这些方法不能提供原子分辨率的运动原子、官能团或结构域的视图,因此弛豫技术已经与分子动力学(MD)模拟相结合,以获得机械描述并深入了解侧链或结构域运动的功能作用。在这项工作中,我们比较了五种允许联合分析 MD 模拟和 NMR 弛豫实验的计算方法。我们讨论了它们的相对优势和适用领域,并展示了如何利用它们来解释以小分子蛋白泛素为测试系统的 MD 模拟中的动力学。我们专注于疏水性侧链,因为该蛋白质的骨架具有刚性。我们发现实验、异亮氨酸残基的 χ1/χ2 构象空间中构建的 Markov 状态模型、显式构象跳跃模型以及使用 ROMANCE 对运动的分解之间存在令人鼓舞的一致性。这些方法使我们能够将动力学归因于特定的构象跳跃。使用八种不同的力场和水模型的模拟突出了如何使用不同的指标来确定力场的缺陷。此外,所提出的比较提供了一种观点,即 NMR 弛豫可作为最先进的生物分子力场预测动力学的验证数据。