Liebermann Niklas, Ghanem Khaldoon, Alavi Ali
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
J Chem Phys. 2022 Sep 28;157(12):124111. doi: 10.1063/5.0107317.
We investigate the exact full configuration interaction quantum Monte Carlo algorithm (without the initiator approximation) applied to weak sign-problem fermionic systems, namely, systems in which the energy gap to the corresponding sign-free or "stoquastized" state is small. We show that the minimum number of walkers required to exactly overcome the sign problem can be significantly reduced via an importance-sampling similarity transformation even though the similarity-transformed Hamiltonian has the same stoquastic gap as the untransformed one. Furthermore, we show that in the off-half-filling Hubbard model at U/t = 8, the real-space (site) representation has a much weaker sign problem compared to the momentum space representation. By applying importance sampling using a Gutzwiller-like guiding wavefunction, we are able to substantially reduce the minimum number of walkers in the case of 2 × ℓ Hubbard ladders, enabling us to get exact energies for sizable ladders. With these results, we calculate the fundamental charge gap ΔE = E(N + 1) + E(N - 1) - 2E(N) for the ladder systems compared to strictly one-dimensional Hubbard chains and show that the ladder systems have a reduced fundamental gap compared to the 1D chains.
我们研究了应用于弱符号问题费米子系统的精确全组态相互作用量子蒙特卡罗算法(无发起者近似),即与相应无符号或“随机化”状态的能隙较小的系统。我们表明,即使相似变换后的哈密顿量与未变换的哈密顿量具有相同的随机化能隙,通过重要性抽样相似变换也可以显著减少精确克服符号问题所需的最少步行者数量。此外,我们表明,在U/t = 8的欠半填充哈伯德模型中,实空间(格点)表示的符号问题比动量空间表示要弱得多。通过使用类似古兹维勒的引导波函数进行重要性抽样,我们能够在2×ℓ哈伯德梯子的情况下大幅减少最少步行者数量,从而能够得到相当大尺寸梯子的精确能量。基于这些结果,我们计算了梯子系统相对于严格一维哈伯德链的基本电荷能隙ΔE = E(N + 1) + E(N - 1) - 2E(N),并表明梯子系统的基本能隙比一维链要小。