Suppr超能文献

万亿行列式全组态相互作用的分布式实现

Distributed Implementation of Full Configuration Interaction for One Trillion Determinants.

作者信息

Gao Hong, Imamura Satoshi, Kasagi Akihiko, Yoshida Eiji

机构信息

Computing Laboratory, Fujitsu Laboratories, Fujitsu LimitedRINGGOLD, Kawasaki City, Kanagawa, 211-0053, Japan.

出版信息

J Chem Theory Comput. 2024 Feb 13;20(3):1185-1192. doi: 10.1021/acs.jctc.3c01190. Epub 2024 Feb 5.

Abstract

Full configuration interaction (FCI) can provide an exact molecular ground-state energy within a given basis set and serve as a benchmark for approximate methods in quantum chemical calculations, including the emerging variational quantum eigensolver. However, its exponential computational and memory requirements easily exceed the capability of a single server and limit its applicability to large molecules. In this paper, we present a distributed FCI implementation employing a hybrid parallelization scheme with multithreading and multiprocessing to expand FCI's applicability. We optimize this scheme to minimize the bottlenecks arising from interprocess communications and interthread data management. Our implementation achieves higher scalability than the naive combination of prior works and successfully calculates the exact energy of CH/STO-3G with 1.31 trillion determinants, which is the largest FCI calculation to the best of our knowledge. Furthermore, we provide a comprehensive list of FCI results with 136 combinations of molecules and basis sets for future evaluation and development of approximate methods.

摘要

全组态相互作用(FCI)可以在给定基组内提供精确的分子基态能量,并作为量子化学计算中近似方法的基准,包括新兴的变分量子本征求解器。然而,其指数级的计算和内存需求很容易超出单个服务器的能力,并限制了其对大分子的适用性。在本文中,我们提出了一种分布式FCI实现方法,采用多线程和多处理的混合并行化方案来扩展FCI的适用性。我们对该方案进行了优化,以尽量减少进程间通信和线程间数据管理产生的瓶颈。我们的实现比先前工作的简单组合具有更高的可扩展性,并成功计算出了具有1.31万亿个行列式的CH/STO-3G的精确能量,据我们所知,这是最大规模的FCI计算。此外,我们提供了一份包含136种分子和基组组合的FCI结果的综合列表,以供未来近似方法的评估和开发使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f85/10867839/dfb3ecfda74c/ct3c01190_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验