Department of Physics and State Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schroedinger-Str. 46, 67663 Kaiserslautern, Germany.
Fraunhofer Institute for Industrial Mathematics ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany.
Rev Sci Instrum. 2022 Sep 1;93(9):095104. doi: 10.1063/5.0100330.
We present a robust, fiber-based endoscope with a silver direct-laser-written structure for radio frequency (RF) emission next to the optical fiber facet. Thereby, we are able to excite and probe a sample, such as nitrogen-vacancy (NV) centers in diamond, with RF and optical signals simultaneously and specifically measure the fluorescence of the sample fully through the fiber. At our targeted frequency range of around 2.9 GHz, the facet of the fiber core is in the near-field of the RF-guiding silver structure, which comes with the advantage of an optimal RF intensity decreasing rapidly with the distance. By creating a silver structure on the cladding of the optical fiber, we achieve the minimal possible distance between an optically excited and detected sample and an antenna structure without affecting the optical performance of the fiber. This allows us to realize a high RF amplitude at the sample's position when considering an endoscope solution with integrated optical and RF access. The capabilities of the endoscope are quantified by optically detected magnetic resonance (ODMR) measurements of an NV-doped microdiamond that we probe as a practical use case. We demonstrate a magnetic sensitivity of our device of 17.8 nT/Hz when measuring the ODMR exclusively through our fiber and compare the sensitivity to a measurement using a confocal microscope. Moreover, the application of our device is not limited to NV centers in diamonds. Similar endoscope-like devices combining optical excitation and detection with radio frequency or microwave antenna could be used as a powerful tool for measuring a variety of fluorescent particles that have so far only been investigated with bulky and large optical setups. Furthermore, our endoscope points toward precise distance measurements based on Rabi oscillations.
我们提出了一种基于光纤的内窥镜,其具有银直接激光写入结构,可在光纤端面旁边产生射频 (RF) 辐射。通过这种方式,我们能够同时用 RF 和光学信号激发和探测样品,例如金刚石中的氮空位 (NV) 中心,并通过光纤完全探测到样品的荧光。在我们的目标频率范围(约 2.9GHz)内,光纤芯的端面处于 RF 导银结构的近场中,这具有 RF 强度随距离迅速减小的优点。通过在光纤包层上创建银结构,我们在不影响光纤光学性能的情况下,实现了光学激发和探测样品与天线结构之间的最小距离。当考虑具有集成光学和 RF 接入的内窥镜解决方案时,这允许我们在样品位置实现高 RF 幅度。我们通过对 NV 掺杂微金刚石进行光学检测磁共振 (ODMR) 测量来量化内窥镜的性能,该金刚石是我们用作实际应用案例的探针。我们通过仅使用光纤测量 ODMR 时,证明了我们的设备的磁灵敏度为 17.8 nT/Hz,并将该灵敏度与使用共聚焦显微镜进行的测量进行了比较。此外,我们的设备不仅限于金刚石中的 NV 中心。类似的内窥镜式设备可以将光学激发和检测与射频或微波天线结合使用,作为测量各种荧光粒子的强大工具,这些粒子迄今为止仅使用庞大的光学装置进行了研究。此外,我们的内窥镜基于 Rabi 振荡,为精确的距离测量指明了方向。