Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.
Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
J Colloid Interface Sci. 2023 Jan;629(Pt B):620-631. doi: 10.1016/j.jcis.2022.09.100. Epub 2022 Sep 26.
The bacteria suspended in pure water self-assemble into unique patterns depending on bacteria-bacteria, bacteria-substrate and bacteria-liquid interactions. The physical forces acting on bacteria vary based on their respective spatial location inside the droplet cause an assorted magnitude of physical stress. The shear and dehydration induced stress on pathogens(bacteria) in drying bio-fluid droplets alters the viability and infectivity.
We have investigated the flow and desiccation-driven self-assembly of Klebsiella pneumoniae in the naturally evaporating sessile droplets. Klebsiella pneumoniae exhibits extensive changes in its morphology and forms unique patterns as the droplet dries, revealing hitherto unexplored rich physics governing its survival and infection strategies. Self-assembly of bacteria at the droplet contact line is characterized by order-to-disorder packing transitions with high packing densities and excessive deformations (analysed using scanning electron microscopy and atomic force microscopy). In contrast, thin-film instability-led hole formation at the center of the droplet engenders spatial packing of bacteria analogous to honeycomb weathering.
Self-assembly favors the bacteria at the rim of the droplet, leading to enhanced viability and pathogenesis on the famously known "coffee ring" of the droplet compared to the bacteria present at the center of the droplet residue. Mechanistic insights gained via our study can have far-reaching implications for bacterial infection through droplets, e.g., through open wounds.
悬浮在纯水中的细菌会根据细菌-细菌、细菌-基底和细菌-液体的相互作用自行组装成独特的模式。作用于细菌的物理力根据它们在液滴内各自的空间位置而变化,导致各种程度的物理应力。干燥生物液滴中病原体(细菌)的剪切和脱水诱导的应激会改变其生存能力和感染力。
我们研究了在自然蒸发的液滴中肺炎克雷伯菌的流动和干燥驱动的自组装。肺炎克雷伯菌在形态上发生了广泛的变化,并在液滴干燥时形成了独特的图案,揭示了迄今为止未知的丰富物理现象,这些物理现象控制着它的生存和感染策略。细菌在液滴接触线处的自组装表现为有序到无序的堆积转变,具有高密度和过度变形(使用扫描电子显微镜和原子力显微镜进行分析)。相比之下,液滴中心的薄膜不稳定性导致的孔形成导致了细菌的空间堆积,类似于蜂窝状风化。
自组装有利于液滴边缘的细菌,与液滴中心的细菌相比,在著名的“咖啡环”处的细菌具有更高的生存能力和发病机制。通过我们的研究获得的机制见解可以对通过液滴传播的细菌感染产生深远的影响,例如通过开放性伤口。