Suppr超能文献

钠离子电池中不可石墨化碳的结构性质与电化学行为的相关性

Correlating Structural Properties with Electrochemical Behavior of Non-graphitizable Carbons in Na-Ion Batteries.

作者信息

Tratnik Blaž, Van de Velde Nigel, Jerman Ivan, Kapun Gregor, Tchernychova Elena, Tomšič Matija, Jamnik Andrej, Genorio Boštjan, Vizintin Alen, Dominko Robert

机构信息

National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia.

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia.

出版信息

ACS Appl Energy Mater. 2022 Sep 26;5(9):10667-10679. doi: 10.1021/acsaem.2c01390. Epub 2022 Aug 23.

Abstract

We report on a detailed structural versus electrochemical property investigation of the corncob-derived non-graphitizable carbons prepared at different carbonization temperatures using a combination of structural characterization methodology unique to this field. Non-graphitizable carbons are currently the most viable option for the negative electrode in sodium-ion batteries. However, many challenges arise from the strong dependence of the precursor's choice and carbonization parameters on the evolution of the carbon matrix and its resulting electrochemistry. We followed structure development upon the increase in carbonization temperature with thorough structural characterization and electrochemical testing. With the increase of carbonization temperature from 900 to 1600 °C, our prepared materials exhibited a trend toward increasing structural order, an increase in the specific surface area of micropores, the development of ultramicroporosity, and an increase in conductivity. This was clearly demonstrated by a synergy of small- and wide-angle X-ray scattering, scanning transmission electron microscopy, and electron-energy loss spectroscopy techniques. Three-electrode full cell measurements confirmed incomplete desodiation of Na ions from the non-graphitizable carbons in the first cycle due to the formation of a solid-electrolyte interface and Na trapping in the pores, followed by a stable second cycle. The study of cycling stability over 100 cycles in a half-cell configuration confirmed the observed high irreversible capacity in the first cycle, which stabilized to a slow decrease afterward, with the Coulombic efficiency reaching 99% after 30 cycles and then stabilizing between 99.3 and 99.5%. Subsequently, a strong correlation between the determined structural properties and the electrochemical behavior was established.

摘要

我们报告了一项详细的结构与电化学性能研究,该研究针对使用该领域特有的结构表征方法组合在不同碳化温度下制备的玉米芯衍生的非石墨化碳。非石墨化碳目前是钠离子电池负极最可行的选择。然而,前驱体的选择和碳化参数对碳基体的演变及其产生的电化学性能有很强的依赖性,这带来了许多挑战。我们通过全面的结构表征和电化学测试跟踪了碳化温度升高时的结构发展。随着碳化温度从900℃升高到1600℃,我们制备的材料呈现出结构有序度增加、微孔比表面积增加、超微孔发展以及电导率增加的趋势。小角和广角X射线散射、扫描透射电子显微镜和电子能量损失谱技术的协同作用清楚地证明了这一点。三电极全电池测量证实,由于固体电解质界面的形成和钠离子在孔中的捕获,在第一个循环中钠离子从非石墨化碳中的脱钠不完全,随后是稳定的第二个循环。在半电池配置中对超过100个循环的循环稳定性研究证实了在第一个循环中观察到的高不可逆容量,此后该容量稳定地缓慢下降,库仑效率在30个循环后达到99%,然后稳定在99.3%至99.5%之间。随后,确定的结构性质与电化学行为之间建立了很强的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d677/9516555/74977547a18d/ae2c01390_0002.jpg

相似文献

1
Correlating Structural Properties with Electrochemical Behavior of Non-graphitizable Carbons in Na-Ion Batteries.
ACS Appl Energy Mater. 2022 Sep 26;5(9):10667-10679. doi: 10.1021/acsaem.2c01390. Epub 2022 Aug 23.
4
An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
Small. 2015 Jan 27;11(4):473-81. doi: 10.1002/smll.201401521. Epub 2014 Sep 25.
5
Sealed pre-carbonization to regulate the porosity and heteroatom sites of biomass derived carbons for lithium-sulfur batteries.
J Colloid Interface Sci. 2020 Nov 1;579:667-679. doi: 10.1016/j.jcis.2020.06.068. Epub 2020 Jul 1.
6
New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation.
ACS Appl Mater Interfaces. 2015 Apr 1;7(12):7025-32. doi: 10.1021/acsami.5b01260. Epub 2015 Mar 23.
7
Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.
ChemSusChem. 2017 Jun 22;10(12):2668-2676. doi: 10.1002/cssc.201700628. Epub 2017 May 18.
8
9
Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes.
ACS Nano. 2013 Dec 23;7(12):11004-15. doi: 10.1021/nn404640c. Epub 2013 Nov 12.
10
Capacitive energy storage in nanostructured carbon-electrolyte systems.
Acc Chem Res. 2013 May 21;46(5):1094-103. doi: 10.1021/ar200306b. Epub 2012 Jun 6.

本文引用的文献

1
An overview on engineering the surface area and porosity of biochar.
Sci Total Environ. 2021 Apr 1;763:144204. doi: 10.1016/j.scitotenv.2020.144204. Epub 2020 Dec 25.
2
Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries.
Beilstein J Nanotechnol. 2020 Aug 14;11:1217-1229. doi: 10.3762/bjnano.11.106. eCollection 2020.
4
Converting Corncob to Activated Porous Carbon for Supercapacitor Application.
Nanomaterials (Basel). 2018 Mar 21;8(4):181. doi: 10.3390/nano8040181.
5
Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.
ChemSusChem. 2017 Jun 22;10(12):2668-2676. doi: 10.1002/cssc.201700628. Epub 2017 May 18.
6
Sodium-ion batteries: present and future.
Chem Soc Rev. 2017 Jun 19;46(12):3529-3614. doi: 10.1039/c6cs00776g.
8
Na-Ion Battery Anodes: Materials and Electrochemistry.
Acc Chem Res. 2016 Feb 16;49(2):231-40. doi: 10.1021/acs.accounts.5b00482. Epub 2016 Jan 19.
9
Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries.
Adv Mater. 2015 Oct 21;27(39):5895-900. doi: 10.1002/adma.201502018. Epub 2015 Aug 25.
10
New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon.
Nano Lett. 2015 Sep 9;15(9):5888-92. doi: 10.1021/acs.nanolett.5b01969. Epub 2015 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验