Department of Laboratory Medicine, Chongqing General Hospital, Chongqing, China.
Department of Laboratory Medicine, Fuling Center Hospital of Chongqing City, Chongqing, China.
Front Public Health. 2022 Sep 14;10:960740. doi: 10.3389/fpubh.2022.960740. eCollection 2022.
Thyroid tumors, one of the common tumors in the endocrine system, while the discrimination between benign and malignant thyroid tumors remains insufficient. The aim of this study is to construct a diagnostic model of benign and malignant thyroid tumors, in order to provide an emerging auxiliary diagnostic method for patients with thyroid tumors. The patients were selected from the Chongqing General Hospital (Chongqing, China) from July 2020 to September 2021. And peripheral blood, gene, and demographic indicators were selected, including sex, age, gene, lymphocyte count (Lymph#), neutrophil count (Neu#), neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), red blood cell distribution width (RDW), platelets count (PLT), red blood cell distribution width-coefficient of variation (RDW-CV), alkaline phosphatase (ALP), and parathyroid hormone (PTH). First, feature selection was executed by univariate analysis combined with least absolute shrinkage and selection operator (LASSO) analysis. Afterward, we used machine learning algorithms to establish three types of models. The first model contains all predictors, the second model contains indicators after feature selection, and the third model contains patient peripheral blood indicators. The four machine learning algorithms include extreme gradient boosting (XGBoost), random forest (RF), light gradient boosting machine (LightGBM), and adaptive boosting (AdaBoost) which were used to build predictive models. A grid search algorithm was used to find the optimal parameters of the machine learning algorithms. A series of indicators, such as the area under the curve (AUC), were intended to determine the model performance. A total of 2,042 patients met the criteria and were enrolled in this study, and 12 variables were included. Sex, age, Lymph#, PLR, RDW, and BRAFV600E were identified as statistically significant indicators by univariate and LASSO analysis. Among the model we constructed, RF, XGBoost, LightGBM and AdaBoost with the AUC of 0.874 (95% CI, 0.841-0.906), 0.868 (95% CI, 0.834-0.901), 0.861 (95% CI, 0.826-0.895), and 0.837 (95% CI, 0.802-0.873) in the first model. With the AUC of 0.853 (95% CI, 0.818-0.888), 0.853 (95% CI, 0.818-0.889), 0.837 (95% CI, 0.800-0.873), and 0.832 (95% CI, 0.797-0.867) in the second model. With the AUC of 0.698 (95% CI, 0.651-0.745), 0.688 (95% CI, 0.639-0.736), 0.693 (95% CI, 0.645-0.741), and 0.666 (95% CI, 0.618-0.714) in the third model. Compared with the existing models, our study proposes a model incorporating novel biomarkers which could be a powerful and promising tool for predicting benign and malignant thyroid tumors.
甲状腺肿瘤是内分泌系统常见肿瘤之一,而良恶性甲状腺肿瘤的鉴别仍存在不足。本研究旨在构建良恶性甲状腺肿瘤的诊断模型,为甲状腺肿瘤患者提供一种新的辅助诊断方法。
患者选自 2020 年 7 月至 2021 年 9 月期间的重庆医科大学附属第一医院(重庆,中国)。并选择了外周血、基因和人口统计学指标,包括性别、年龄、基因、淋巴细胞计数(Lymph#)、中性粒细胞计数(Neu#)、中性粒细胞/淋巴细胞比值(NLR)、血小板/淋巴细胞比值(PLR)、红细胞分布宽度(RDW)、血小板计数(PLT)、红细胞分布宽度变异系数(RDW-CV)、碱性磷酸酶(ALP)和甲状旁腺激素(PTH)。首先,通过单变量分析结合最小绝对值收缩和选择算子(LASSO)分析进行特征选择。然后,我们使用机器学习算法建立了三种类型的模型。第一种模型包含所有预测因子,第二种模型包含特征选择后的指标,第三种模型包含患者外周血指标。四种机器学习算法包括极端梯度提升(XGBoost)、随机森林(RF)、轻梯度提升机(LightGBM)和自适应提升(AdaBoost),用于构建预测模型。使用网格搜索算法来找到机器学习算法的最佳参数。一系列指标,如曲线下面积(AUC),旨在确定模型性能。共有 2042 名符合条件的患者被纳入本研究,共纳入 12 个变量。单变量和 LASSO 分析表明,性别、年龄、Lymph#、PLR、RDW 和 BRAFV600E 是统计学上显著的指标。
在我们构建的模型中,RF、XGBoost、LightGBM 和 AdaBoost 的 AUC 分别为 0.874(95%CI,0.841-0.906)、0.868(95%CI,0.834-0.901)、0.861(95%CI,0.826-0.895)和 0.837(95%CI,0.802-0.873),用于第一模型。对于第二模型,AUC 分别为 0.853(95%CI,0.818-0.888)、0.853(95%CI,0.818-0.889)、0.837(95%CI,0.800-0.873)和 0.832(95%CI,0.797-0.867)。对于第三模型,AUC 分别为 0.698(95%CI,0.651-0.745)、0.688(95%CI,0.639-0.736)、0.693(95%CI,0.645-0.741)和 0.666(95%CI,0.618-0.714)。与现有模型相比,我们的研究提出了一种包含新生物标志物的模型,可为预测良恶性甲状腺肿瘤提供一种强大且有前途的工具。