Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Lancet Digit Health. 2021 Apr;3(4):e250-e259. doi: 10.1016/S2589-7500(21)00041-8.
Strategies for integrating artificial intelligence (AI) into thyroid nodule management require additional development and testing. We developed a deep-learning AI model (ThyNet) to differentiate between malignant tumours and benign thyroid nodules and aimed to investigate how ThyNet could help radiologists improve diagnostic performance and avoid unnecessary fine needle aspiration.
ThyNet was developed and trained on 18 049 images of 8339 patients (training set) from two hospitals (the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, and Sun Yat-sen University Cancer Center, Guangzhou, China) and tested on 4305 images of 2775 patients (total test set) from seven hospitals (the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the Guangzhou Army General Hospital, Guangzhou, China; the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; the First Affiliated Hospital of Sun Yat-sen University; Sun Yat-sen University Cancer Center; and the First Affiliated Hospital of Guangxi Medical University, Nanning, China) in three stages. All nodules in the training and total test set were pathologically confirmed. The diagnostic performance of ThyNet was first compared with 12 radiologists (test set A); a ThyNet-assisted strategy, in which ThyNet assisted diagnoses made by radiologists, was developed to improve diagnostic performance of radiologists using images (test set B); the ThyNet assisted strategy was then tested in a real-world clinical setting (using images and videos; test set C). In a simulated scenario, the number of unnecessary fine needle aspirations avoided by ThyNet-assisted strategy was calculated.
The area under the receiver operating characteristic curve (AUROC) for accurate diagnosis of ThyNet (0·922 [95% CI 0·910-0·934]) was significantly higher than that of the radiologists (0·839 [0·834-0·844]; p<0·0001). Furthermore, ThyNet-assisted strategy improved the pooled AUROC of the radiologists from 0·837 (0·832-0·842) when diagnosing without ThyNet to 0·875 (0·871-0·880; p<0·0001) with ThyNet for reviewing images, and from 0·862 (0·851-0·872) to 0·873 (0·863-0·883; p<0·0001) in the clinical test, which used images and videos. In the simulated scenario, the number of fine needle aspirations decreased from 61·9% to 35·2% using the ThyNet-assisted strategy, while missed malignancy decreased from 18·9% to 17·0%.
The ThyNet-assisted strategy can significantly improve the diagnostic performance of radiologists and help reduce unnecessary fine needle aspirations for thyroid nodules.
National Natural Science Foundation of China and Guangzhou Science and Technology Project.
将人工智能(AI)整合到甲状腺结节管理中的策略需要进一步开发和测试。我们开发了一种深度学习 AI 模型(ThyNet),用于区分恶性肿瘤和良性甲状腺结节,并旨在研究 ThyNet 如何帮助放射科医生提高诊断性能并避免不必要的细针抽吸。
ThyNet 是在两家医院(中国中山大学第一附属医院和中山大学肿瘤防治中心)的 8339 名患者的 18049 张图像(训练集)上开发和训练的,并在七家医院的 2775 名患者的 4305 张图像(总测试集)上进行了测试(广州中医药大学第一附属医院;第六附属医院中山大学,广州;广州军区总医院,广州;中山大学第三附属医院,广州;中山大学第一附属医院;中山大学肿瘤防治中心;广西医科大学第一附属医院,南宁)分为三个阶段。所有在训练集和总测试集中的结节均经病理证实。首先将 ThyNet 的诊断性能与 12 名放射科医生(测试集 A)进行了比较;开发了一种 ThyNet 辅助策略,该策略使用图像(测试集 B)帮助放射科医生进行诊断,以提高放射科医生的诊断性能;然后在实际临床环境中(使用图像和视频;测试集 C)测试了 ThyNet 辅助策略。在模拟场景中,计算了 ThyNet 辅助策略避免的不必要细针抽吸的数量。
ThyNet 准确诊断的受试者工作特征曲线下面积(AUROC)(0.922[95%CI 0.910-0.934])明显高于放射科医生(0.839[0.834-0.844];p<0.0001)。此外,当放射科医生在没有 ThyNet 的情况下进行诊断时,ThyNet 辅助策略将放射科医生的汇总 AUROC 从 0.837(0.832-0.842)提高到 0.875(0.871-0.880;p<0.0001),使用图像进行检查,而在临床测试中,从 0.862(0.851-0.872)提高到 0.873(0.863-0.883;p<0.0001),使用图像和视频。在模拟场景中,使用 ThyNet 辅助策略,细针抽吸的数量从 61.9%减少到 35.2%,而恶性肿瘤的漏诊率从 18.9%下降到 17.0%。
ThyNet 辅助策略可以显著提高放射科医生的诊断性能,并有助于减少甲状腺结节的不必要细针抽吸。
国家自然科学基金和广州市科技项目。