Stevens Hannah, Rasul Muhammad Ehab, Oh Yoo Jung
University of California, Davis Davis, CA United States.
JMIR Infodemiology. 2022 Sep 13;2(2):e37635. doi: 10.2196/37635. eCollection 2022 Jul-Dec.
Despite vaccine availability, vaccine hesitancy has inhibited public health officials' efforts to mitigate the COVID-19 pandemic in the United States. Although some US elected officials have responded by issuing vaccine mandates, others have amplified vaccine hesitancy by broadcasting messages that minimize vaccine efficacy. The politically polarized nature of COVID-19 information on social media has given rise to incivility, wherein health attitudes often hinge more on political ideology than science.
To the best of our knowledge, incivility has not been studied in the context of discourse regarding COVID-19 vaccines and mandates. Specifically, there is little focus on the psychological processes that elicit uncivil vaccine discourse and behaviors. Thus, we investigated 3 psychological processes theorized to predict discourse incivility-namely, anxiety, anger, and sadness.
We used 2 different natural language processing approaches: (1) the Linguistic Inquiry and Word Count computational tool and (2) the Google Perspective application programming interface (API) to analyze a data set of 8014 tweets containing terms related to COVID-19 vaccine mandates from September 14, 2021, to October 1, 2021. To collect the tweets, we used the Twitter API Tweet Downloader Tool (version 2). Subsequently, we filtered through a data set of 375,000 vaccine-related tweets using keywords to extract tweets explicitly focused on vaccine mandates. We relied on the Linguistic Inquiry and Word Count computational tool to measure the valence of linguistic anger, sadness, and anxiety in the tweets. To measure dimensions of post incivility, we used the Google Perspective API.
This study resolved discrepant operationalizations of incivility by introducing incivility as a multifaceted construct and explored the distinct emotional processes underlying 5 dimensions of discourse incivility. The findings revealed that 3 types of emotions-anxiety, anger, and sadness-were uniquely associated with dimensions of incivility (eg, toxicity, severe toxicity, insult, profanity, threat, and identity attacks). Specifically, the results showed that anger was significantly positively associated with all dimensions of incivility (all <.001), whereas sadness was significantly positively related to threat (=.04). Conversely, anxiety was significantly negatively associated with identity attack (=.03) and profanity (=.02).
The results suggest that our multidimensional approach to incivility is a promising alternative to understanding and intervening in the psychological processes underlying uncivil vaccine discourse. Understanding specific emotions that can increase or decrease incivility such as anxiety, anger, and sadness can enable researchers and public health professionals to develop effective interventions against uncivil vaccine discourse. Given the need for real-time monitoring and automated responses to the spread of health information and misinformation on the web, social media platforms can harness the Google Perspective API to offer users immediate, automated feedback when it detects that a comment is uncivil.
尽管有疫苗可用,但疫苗犹豫情绪阻碍了美国公共卫生官员缓解新冠疫情的努力。虽然一些美国民选官员通过发布疫苗强制令来应对,但另一些官员却通过传播贬低疫苗功效的信息加剧了疫苗犹豫情绪。社交媒体上关于新冠疫情信息的政治两极分化性质引发了不文明行为,其中健康态度往往更多地取决于政治意识形态而非科学。
据我们所知,在关于新冠疫苗和强制令的讨论背景下,尚未对不文明行为进行研究。具体而言,很少关注引发不文明疫苗讨论和行为的心理过程。因此,我们调查了理论上可预测讨论不文明行为的三个心理过程,即焦虑、愤怒和悲伤。
我们使用了两种不同的自然语言处理方法:(1)语言查询与字数统计计算工具,以及(2)谷歌观点应用程序编程接口(API),来分析一组包含与2021年9月14日至2021年10月1日新冠疫苗强制令相关术语的8014条推文数据集。为收集推文,我们使用了推特应用程序编程接口推文下载工具(版本2)。随后,我们使用关键词在37.5万条与疫苗相关的推文数据集中进行筛选,以提取明确关注疫苗强制令的推文。我们依靠语言查询与字数统计计算工具来测量推文中语言愤怒、悲伤和焦虑的效价。为测量不文明行为发生后的维度,我们使用了谷歌观点应用程序编程接口。
本研究通过将不文明行为作为一个多方面的结构引入,解决了不文明行为不一致的操作化问题,并探索了不文明讨论的五个维度背后不同的情感过程。研究结果显示,焦虑、愤怒和悲伤这三种情绪与不文明行为的维度(如毒性、严重毒性、侮辱、亵渎、威胁和身份攻击)存在独特关联。具体而言,结果表明愤怒与不文明行为的所有维度均呈显著正相关(均P<.001),而悲伤与威胁显著正相关(P=.04)。相反,焦虑与身份攻击(P=.03)和亵渎(P=.02)显著负相关。
结果表明,我们对不文明行为的多维方法是理解和干预不文明疫苗讨论背后心理过程的一种有前景的替代方法。了解诸如焦虑、愤怒和悲伤等能增加或减少不文明行为的特定情绪,可使研究人员和公共卫生专业人员制定有效的干预措施来应对不文明的疫苗讨论。鉴于需要对网络上健康信息和错误信息的传播进行实时监测和自动回应,社交媒体平台可利用谷歌观点应用程序编程接口,在检测到评论不文明时为用户提供即时自动反馈。