Suppr超能文献

犯罪调查中使用卷积神经网络和局部二值模式融合的新型方法进行面部表情识别。

Facial Emotion Recognition Using a Novel Fusion of Convolutional Neural Network and Local Binary Pattern in Crime Investigation.

机构信息

School of Law, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310000, China.

Department of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.

出版信息

Comput Intell Neurosci. 2022 Sep 22;2022:2249417. doi: 10.1155/2022/2249417. eCollection 2022.

Abstract

The exploration of facial emotion recognition aims to analyze psychological characteristics of juveniles involved in crimes and promote the application of deep learning to psychological feature extraction. First, the relationship between facial emotion recognition and psychological characteristics is discussed. On this basis, a facial emotion recognition model is constructed by increasing the layers of the convolutional neural network (CNN) and integrating CNN with several neural networks such as VGGNet, AlexNet, and LeNet-5. Second, based on the feature fusion, an optimized Central Local Binary Pattern (CLBP) algorithm is introduced into the CNN to construct a CNN-CLBP algorithm for facial emotion recognition. Finally, the validity analysis is conducted on the algorithm after the preprocessing of face images and the optimization of relevant parameters. Compared with other methods, the CNN-CLBP algorithm has higher accuracy in facial expression recognition, with an average recognition rate of 88.16%. Besides, the recognition accuracy of this algorithm is improved by image preprocessing and parameter optimization, and there is no poor-fitting. Moreover, the CNN-CLBP algorithm can recognize 97% of the happy expressions and surprised expressions, but the misidentification rate of sad expressions is 22.54%. The research result provides data reference and direction for analyzing psychological characteristics of juveniles involved in crimes.

摘要

面部情绪识别的探索旨在分析犯罪青少年的心理特征,并推动深度学习在心理特征提取中的应用。首先,探讨了面部情绪识别与心理特征的关系。在此基础上,通过增加卷积神经网络(CNN)的层数,并将 CNN 与 VGGNet、AlexNet 和 LeNet-5 等几种神经网络集成,构建了一个面部情绪识别模型。其次,基于特征融合,将优化后的中心局部二值模式(CLBP)算法引入 CNN 中,构建用于面部情绪识别的 CNN-CLBP 算法。最后,对人脸图像的预处理和相关参数的优化后的算法进行有效性分析。与其他方法相比,CNN-CLBP 算法在面部表情识别方面具有更高的准确性,平均识别率为 88.16%。此外,通过图像预处理和参数优化,提高了该算法的识别精度,不存在拟合不良的情况。而且,CNN-CLBP 算法可以识别出 97%的快乐表情和惊讶表情,但悲伤表情的误识别率为 22.54%。研究结果为分析犯罪青少年的心理特征提供了数据参考和方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b13/9522492/869bc96a07e0/CIN2022-2249417.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验