Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland.
Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland.
Development. 2022 Oct 1;149(19). doi: 10.1242/dev.200986. Epub 2022 Oct 3.
Nephron endowment is defined by fetal kidney growth and crucially dictates renal health in adults. Defects in the molecular regulation of nephron progenitors contribute to only a fraction of reduced nephron mass cases, suggesting alternative causative mechanisms. The importance of MAPK/ERK activation in nephron progenitor maintenance has been previously demonstrated, and here, we characterized the metabolic consequences of MAPK/ERK deficiency. Liquid chromatography/mass spectrometry-based metabolomics profiling identified 42 reduced metabolites, of which 26 were supported by in vivo transcriptional changes in MAPK/ERK-deficient nephron progenitors. Among these, mitochondria, ribosome and amino acid metabolism, together with diminished pyruvate and proline metabolism, were the most affected pathways. In vitro cultures of mouse kidneys demonstrated a dosage-specific function for pyruvate in controlling the shape of the ureteric bud tip, a regulatory niche for nephron progenitors. In vivo disruption of proline metabolism caused premature nephron progenitor exhaustion through their accelerated differentiation in pyrroline-5-carboxylate reductases 1 (Pycr1) and 2 (Pycr2) double-knockout kidneys. Pycr1/Pycr2-deficient progenitors showed normal cell survival, indicating no changes in cellular stress. Our results suggest that MAPK/ERK-dependent metabolism functionally participates in nephron progenitor maintenance by monitoring pyruvate and proline biogenesis in developing kidneys.
肾单位的数量由胎儿肾脏的生长决定,这对成人的肾脏健康至关重要。肾祖细胞的分子调节缺陷仅导致一小部分肾单位数量减少的病例,这表明存在其他致病机制。MAPK/ERK 激活在肾祖细胞的维持中具有重要作用,在此,我们研究了 MAPK/ERK 缺乏的代谢后果。基于液相色谱/质谱的代谢组学分析鉴定出 42 种减少的代谢物,其中 26 种得到了 MAPK/ERK 缺陷肾祖细胞中体内转录变化的支持。在这些代谢物中,线粒体、核糖体和氨基酸代谢以及丙酮酸和脯氨酸代谢的减少受到的影响最大。在体外培养的小鼠肾脏中,发现丙酮酸在控制输尿管芽尖端的形状(肾祖细胞的调节生态位)方面具有剂量依赖性的功能。体内脯氨酸代谢的破坏通过加速脯氨酸-5-羧基还原酶 1 (Pycr1) 和 2 (Pycr2) 双敲除肾脏中肾祖细胞的分化,导致肾祖细胞过早耗尽。Pycr1/Pycr2 缺陷的祖细胞显示出正常的细胞存活,表明细胞应激没有变化。我们的结果表明,MAPK/ERK 依赖性代谢通过监测发育肾脏中丙酮酸和脯氨酸的生物合成,在肾祖细胞的维持中发挥功能。