Suppr超能文献

用于膀胱病变膀胱镜检查视频记录的高效框架:概念验证研究。

An Efficient Framework for Video Documentation of Bladder Lesions for Cystoscopy: A Proof-of-Concept Study.

机构信息

Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.

Department of Urology, Stanford University School of Medicine, 453 Quarry Road, Mail Code 5656, Palo Alto, CA, 94304, USA.

出版信息

J Med Syst. 2022 Oct 3;46(11):73. doi: 10.1007/s10916-022-01862-8.

Abstract

Processing full-length cystoscopy videos is challenging for documentation and research purposes. We therefore designed a surgeon-guided framework to extract short video clips with bladder lesions for more efficient content navigation and extraction. Screenshots of bladder lesions were captured during transurethral resection of bladder tumor, then manually labeled according to case identification, date, lesion location, imaging modality, and pathology. The framework used the screenshot to search for and extract a corresponding 10-seconds video clip. Each video clip included a one-second space holder with a QR barcode informing the video content. The success of the framework was measured by the secondary use of these short clips and the reduction of storage volume required for video materials. From 86 cases, the framework successfully generated 249 video clips from 230 screenshots, with 14 erroneous video clips from 8 screenshots excluded. The HIPPA-compliant barcodes provided information of video contents with a 100% data completeness. A web-based educational gallery was curated with various diagnostic categories and annotated frame sequences. Compared with the unedited videos, the informative short video clips reduced the storage volume by 99.5%. In conclusion, our framework expedites the generation of visual contents with surgeon's instruction for cystoscopy and potential incorporation of video data towards applications including clinical documentation, education, and research.

摘要

处理全膀胱镜检查视频对于文档记录和研究目的来说具有挑战性。因此,我们设计了一个由外科医生指导的框架,用于提取带有膀胱病变的短视频片段,以实现更高效的内容导航和提取。在经尿道膀胱肿瘤切除术期间拍摄膀胱病变的截图,然后根据病例标识、日期、病变位置、成像方式和病理学进行手动标记。该框架使用截图搜索并提取相应的 10 秒钟视频片段。每个视频片段都包含一个 1 秒钟的占位符,其中包含一个 QR 条形码,告知视频内容。该框架的成功通过这些短视频片段的二次使用以及视频材料所需存储量的减少来衡量。从 86 个病例中,该框架成功地从 230 个截图中生成了 249 个视频片段,其中有 8 个截图的 14 个错误视频片段被排除在外。符合 HIPAA 标准的条形码提供了带有 100%数据完整性的视频内容信息。创建了一个基于网络的教育画廊,其中包含各种诊断类别和带注释的帧序列。与未经编辑的视频相比,信息丰富的短视频片段将存储量减少了 99.5%。总之,我们的框架加快了带有外科医生指导的膀胱镜检查视觉内容的生成速度,并有可能将视频数据纳入临床文档记录、教育和研究等应用中。

相似文献

2
Real-time bladder lesion registration and navigation: a phantom study.
PLoS One. 2013;8(1):e54348. doi: 10.1371/journal.pone.0054348. Epub 2013 Jan 24.
3
Conceptual framework and documentation standards of cystoscopic media content for artificial intelligence.
J Biomed Inform. 2023 Jun;142:104369. doi: 10.1016/j.jbi.2023.104369. Epub 2023 Apr 22.
4
New optical imaging technologies for bladder cancer: considerations and perspectives.
J Urol. 2012 Aug;188(2):361-8. doi: 10.1016/j.juro.2012.03.127. Epub 2012 Jun 13.
7
Overview of current applications and trends in artificial intelligence for cystoscopy and transurethral resection of bladder tumours.
Curr Opin Urol. 2024 Jan 1;34(1):27-31. doi: 10.1097/MOU.0000000000001135. Epub 2023 Oct 30.
9
Role of low-mechanical index CEUS in the differentiation between low and high grade bladder carcinoma: a pilot study.
Ultraschall Med. 2010 Dec;31(6):589-95. doi: 10.1055/s-0029-1245397. Epub 2010 May 6.
10
Efficient Augmented Intelligence Framework for Bladder Lesion Detection.
JCO Clin Cancer Inform. 2023 Sep;7:e2300031. doi: 10.1200/CCI.23.00031.

引用本文的文献

1
Enhancing image retrieval through optimal barcode representation.
Sci Rep. 2025 Aug 7;15(1):28847. doi: 10.1038/s41598-025-14576-x.
2
Optimizing cystoscopy and TURBT: enhanced imaging and artificial intelligence.
Nat Rev Urol. 2025 Jan;22(1):46-54. doi: 10.1038/s41585-024-00904-9. Epub 2024 Jul 9.

本文引用的文献

1
Artificial Intelligence for Segmentation of Bladder Tumor Cystoscopic Images Performed by U-Net with Dilated Convolution.
J Endourol. 2022 Jun;36(6):827-834. doi: 10.1089/end.2021.0483. Epub 2022 May 17.
2
The Current Role of Image Compression Standards in Medical Imaging.
Information (Basel). 2017 Dec;8(4). doi: 10.3390/info8040131. Epub 2017 Oct 19.
4
Presenting an atlas of Hunner lesions in interstitial cystitis which can be identified with office cystoscopy.
Neurourol Urodyn. 2020 Nov;39(8):2394-2400. doi: 10.1002/nau.24500. Epub 2020 Sep 9.
5
A novel endoimaging system for endoscopic 3D reconstruction in bladder cancer patients.
Minim Invasive Ther Allied Technol. 2022 Jan;31(1):34-41. doi: 10.1080/13645706.2020.1761833. Epub 2020 Jun 3.
6
European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines.
Eur Urol. 2021 Jan;79(1):82-104. doi: 10.1016/j.eururo.2020.03.055. Epub 2020 Apr 29.
7
Support System of Cystoscopic Diagnosis for Bladder Cancer Based on Artificial Intelligence.
J Endourol. 2020 Mar;34(3):352-358. doi: 10.1089/end.2019.0509. Epub 2020 Jan 14.
8
Augmented Bladder Tumor Detection Using Deep Learning.
Eur Urol. 2019 Dec;76(6):714-718. doi: 10.1016/j.eururo.2019.08.032. Epub 2019 Sep 17.
9
Diagnostic Classification of Cystoscopic Images Using Deep Convolutional Neural Networks.
JCO Clin Cancer Inform. 2018 Dec;2:1-8. doi: 10.1200/CCI.17.00126.
10
Words affect visual perception by activating object shape representations.
Sci Rep. 2018 Sep 20;8(1):14156. doi: 10.1038/s41598-018-32483-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验