Suppr超能文献

高效增强型人工智能膀胱病变检测框架。

Efficient Augmented Intelligence Framework for Bladder Lesion Detection.

机构信息

AI Vobis, Palo Alto, CA.

Center for Artificial Intelligence in Medicine and Imaging, Stanford University School of Medicine, Stanford, CA.

出版信息

JCO Clin Cancer Inform. 2023 Sep;7:e2300031. doi: 10.1200/CCI.23.00031.

Abstract

PURPOSE

Development of intelligence systems for bladder lesion detection is cost intensive. An efficient strategy to develop such intelligence solutions is needed.

MATERIALS AND METHODS

We used four deep learning models (ConvNeXt, PlexusNet, MobileNet, and SwinTransformer) covering a variety of model complexity and efficacy. We trained these models on a previously published educational cystoscopy atlas (n = 312 images) to estimate the ratio between normal and cancer scores and externally validated on cystoscopy videos from 68 cases, with region of interest (ROI) pathologically confirmed to be benign and cancerous bladder lesions (ie, ROI). The performance measurement included specificity and sensitivity at frame level, frame sequence (block) level, and ROI level for each case.

RESULTS

Specificity was comparable between four models at frame (range, 30.0%-44.8%) and block levels (56%-67%). Although sensitivity at the frame level (range, 81.4%-88.1%) differed between the models, sensitivity at the block level (100%) and ROI level (100%) was comparable between these models. MobileNet and PlexusNet were computationally more efficient for real-time ROI detection than ConvNeXt and SwinTransformer.

CONCLUSION

Educational cystoscopy atlas and efficient models facilitate the development of real-time intelligence system for bladder lesion detection.

摘要

目的

开发用于膀胱病变检测的智能系统需要耗费大量成本。因此,需要采用一种有效的策略来开发此类智能解决方案。

材料和方法

我们使用了四种深度学习模型(ConvNeXt、PlexusNet、MobileNet 和 SwinTransformer),涵盖了多种模型复杂度和功效。我们在之前发表的一个教育性膀胱镜图集(n=312 张图像)上训练这些模型,以估计正常和癌症评分之间的比例,并在 68 例膀胱镜视频上进行外部验证,这些视频的感兴趣区域(ROI)经病理证实为良性和恶性膀胱病变(即 ROI)。性能测量包括每个病例的帧级、帧序列(块)级和 ROI 级别的特异性和敏感性。

结果

在帧级(范围为 30.0%-44.8%)和块级(范围为 56%-67%),四种模型的特异性相当。尽管模型之间的帧级敏感性(范围为 81.4%-88.1%)有所不同,但块级(100%)和 ROI 级(100%)的敏感性相当。MobileNet 和 PlexusNet 比 ConvNeXt 和 SwinTransformer 在实时 ROI 检测方面具有更高的计算效率。

结论

教育性膀胱镜图集和高效模型有助于开发用于膀胱病变检测的实时智能系统。

相似文献

2
Augmented Bladder Tumor Detection Using Deep Learning.深度学习增强的膀胱癌检测。
Eur Urol. 2019 Dec;76(6):714-718. doi: 10.1016/j.eururo.2019.08.032. Epub 2019 Sep 17.

本文引用的文献

7
Multiparametric cystoscopy: is the future here yet?多参数膀胱镜检查:未来已至?
Transl Androl Urol. 2021 Jan;10(1):1-6. doi: 10.21037/tau-20-1012.
10
Augmented Bladder Tumor Detection Using Deep Learning.深度学习增强的膀胱癌检测。
Eur Urol. 2019 Dec;76(6):714-718. doi: 10.1016/j.eururo.2019.08.032. Epub 2019 Sep 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验