Suppr超能文献

由锌钴双金属有机框架衍生的中空多孔氮和钴双掺杂硅@碳纳米立方体用于先进锂离子电池阳极

Hollow Porous N and Co Dual-Doped Silicon@Carbon Nanocube Derived by ZnCo-Bimetallic Metal-Organic Framework toward Advanced Lithium-Ion Battery Anodes.

作者信息

Kim Hongjung, Baek Jinhyuk, Son Dong-Kyu, Ruby Raj Michael, Lee Gibaek

机构信息

Advanced Energy Materials Design Lab, School of Chemical Engineering, Yeungnam University, 38541Gyeongsan, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2022 Oct 12;14(40):45458-45475. doi: 10.1021/acsami.2c13607. Epub 2022 Oct 3.

Abstract

Silicon (Si) has been recognized as a promising alternative to graphite anode materials for advanced lithium-ion batteries (LIBs) owing to its superior theoretical capacity and low discharge voltage. However, Si-based anodes undergo structural pulverization during cycling due to the large volume expansion (ca. 300-400%) and continuous formation of an unstable solid electrolyte interphase (SEI), resulting in fast capacity fading. To address this challenge, a series of different amounts of silicon nanoparticles (Si NPs)-encapsulated hollow porous N-doped/Co-incorporated carbon nanocubes (denoted as p-CoNC@Si, where = 50, 80, and 100) as anode materials for LIBs are reported in this paper. These hollow nanocubic materials were derived by facile annealing of different contents of Si NPs-encapsulated Zn/Co-bimetallic zeolitic imidazolate frameworks (ZIF@Si) as self-sacrificial templates. Owing to the advantages of well-defined hollow framework clusters and highly conductive hollow carbon frameworks, the hollow porous p-CoNC@Si significantly improved the electronic conductivity and Li diffusion coefficient by an order of magnitude higher than that of Si NPs. The as-prepared p-CoNC@Si80 with 80 wt % Si NPs delivered a continuously increasing specific capacity of 1008 mAh g at 500 mA g over 500 cycles, excellent reversible capacity (∼1361 mAh g at 0.1 A g), and superior rate capability (∼603 mAh g at 3 A g) along with an unprecedented long-life cyclic stability of ∼1218 mAh g at 1 A g over 1000 cycles caused by low volume expansion (9.92%) and suppressed SEI side reactions. These findings provide new insights into the development of highly reversible Si-based anode materials for advanced LIBs.

摘要

硅(Si)因其卓越的理论容量和低放电电压,已被公认为是先进锂离子电池(LIBs)石墨负极材料的一种有前景的替代品。然而,由于体积大幅膨胀(约300 - 400%)以及不稳定的固体电解质界面(SEI)持续形成,硅基负极在循环过程中会发生结构粉碎,导致容量快速衰减。为应对这一挑战,本文报道了一系列不同硅纳米颗粒(Si NPs)含量的封装空心多孔氮掺杂/钴掺杂碳纳米立方体(记为p - CoNC@Si,其中 = 50、80和100)作为LIBs的负极材料。这些空心纳米立方材料是通过对不同含量的封装Si NPs的锌/钴双金属沸石咪唑酯骨架(ZIF@Si)进行简便退火处理而得到的,ZIF@Si作为自牺牲模板。由于具有明确的空心框架簇和高导电性空心碳框架的优势,空心多孔p - CoNC@Si显著提高了电子电导率和锂扩散系数,比Si NPs高出一个数量级。所制备的含80 wt% Si NPs的p - CoNC@Si80在500 mA g电流下500次循环中比容量持续增加至1008 mAh g,具有优异的可逆容量(0.1 A g时约为1361 mAh g)和出色的倍率性能(3 A g时约为603 mAh g),以及前所未有的长寿命循环稳定性,在1 A g电流下1000次循环中约为1218 mAh g,这是由于其低体积膨胀(9.92%)和抑制的SEI副反应所致。这些发现为开发用于先进LIBs的高可逆性硅基负极材料提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验