Suppr超能文献

通过集成SrTiO材料提高用于高容量锂离子电池的Si@CNT负极的电化学性能

Enhancing Electrochemical Performance of Si@CNT Anode by Integrating SrTiO Material for High-Capacity Lithium-Ion Batteries.

作者信息

Oli Nischal, Liza Castillo Diana C, Weiner Brad R, Morell Gerardo, Katiyar Ram S

机构信息

Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA.

Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA.

出版信息

Molecules. 2024 Oct 8;29(19):4750. doi: 10.3390/molecules29194750.

Abstract

Silicon (Si) has attracted worldwide attention for its ultrahigh theoretical storage capacity (4200 mA h g), low mass density (2.33 g cm), low operating potential (0.4 V vs. Li/Li), abundant reserves, environmentally benign nature, and low cost. It is a promising high-energy-density anode material for next-generation lithium-ion batteries (LIBs), offering a replacement for graphite anodes owing to the escalating energy demands in booming automobile and energy storage applications. Unfortunately, the commercialization of silicon anodes is stringently hindered by large volume expansion during lithiation-delithiation, the unstable and detrimental growth of electrode/electrolyte interface layers, sluggish Li-ion diffusion, poor rate performance, and inherently low ion/electron conductivity. These present major safety challenges lead to quick capacity degradation in LIBs. Herein, we present the synergistic effects of nanostructured silicon and SrTiO (STO) for use as anodes in Li-ion batteries. Si and STO nanoparticles were incorporated into a multiwalled carbon nanotube (CNT) matrix using a planetary ball-milling process. The mechanical stress resulting from the expansion of Si was transferred via the CNT matrix to the STO. We discovered that the introduction of STO can improve the electrochemical performance of Si/CNT nanocomposite anodes. Experimental measurements and electrochemical impedance spectroscopy provide evidence for the enhanced mobility of Li-ions facilitated by STO. Hence, incorporating STO into the Si@CNT anode yields promising results, exhibiting a high initial Coulombic efficiency of approximately 85%, a reversible specific capacity of ~800 mA h g after 100 cycles at 100 mA g, and a high-rate capability of 1400 mA g with a capacity of 800 mA h g. Interestingly, it exhibits a capacity of 350 mAh g after 1000 lithiation and delithiation cycles at a high rate of 600 mA hg. This result unveils and sheds light on the design of a scalable method for manufacturing Si anodes for next-generation LIBs.

摘要

硅(Si)因其超高的理论存储容量(4200 mA h g)、低质量密度(2.33 g cm)、低工作电位(相对于Li/Li为0.4 V)、储量丰富、环境友好且成本低廉而受到全球关注。它是下一代锂离子电池(LIBs)中一种很有前景的高能量密度负极材料,由于蓬勃发展的汽车和储能应用中不断增长的能量需求,有望取代石墨负极。不幸的是,硅负极的商业化受到锂化-脱锂过程中大量体积膨胀、电极/电解质界面层不稳定且有害的生长、锂离子扩散缓慢、倍率性能差以及固有低离子/电子导电性的严重阻碍。这些主要的安全挑战导致锂离子电池的容量迅速下降。在此,我们展示了纳米结构的硅和SrTiO(STO)用作锂离子电池负极的协同效应。通过行星球磨工艺将硅和STO纳米颗粒掺入多壁碳纳米管(CNT)基质中。硅膨胀产生的机械应力通过碳纳米管基质传递到STO。我们发现引入STO可以改善硅/碳纳米管复合负极的电化学性能。实验测量和电化学阻抗谱为STO促进锂离子迁移提供了证据。因此,将STO掺入Si@CNT负极产生了有前景的结果,在100 mA g下循环100次后,初始库仑效率约为85%,可逆比容量约为800 mA h g,在1400 mA g的高倍率下容量为800 mA h g。有趣的是,在600 mA hg的高倍率下进行1000次锂化和脱锂循环后,它的容量为350 mAh g。这一结果揭示并阐明了一种用于制造下一代锂离子电池硅负极的可扩展方法的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe7/11477527/6eacc423252b/molecules-29-04750-g001.jpg

相似文献

3
Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):54608-54618. doi: 10.1021/acsami.0c14978. Epub 2020 Nov 24.
5
Si/Ti2O3/Reduced Graphene Oxide Nanocomposite Anodes for Lithium-Ion Batteries with Highly Enhanced Cyclic Stability.
ACS Appl Mater Interfaces. 2015 Aug 26;7(33):18483-90. doi: 10.1021/acsami.5b04652. Epub 2015 Aug 12.
6
Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
ACS Nano. 2015 Jun 23;9(6):6576-86. doi: 10.1021/acsnano.5b02565. Epub 2015 May 29.
7
Self-Assembled Framework Formed During Lithiation of SnS Nanoplates Revealed by in Situ Electron Microscopy.
Acc Chem Res. 2017 Jul 18;50(7):1513-1520. doi: 10.1021/acs.accounts.7b00086. Epub 2017 Jul 6.
8
Lithiation of silicon nanoparticles confined in carbon nanotubes.
ACS Nano. 2015 May 26;9(5):5063-71. doi: 10.1021/acsnano.5b00157. Epub 2015 Apr 20.
9
Enhanced stability and kinetic performance of sandwich Si anode constructed by carbon nanotube and silicon carbide for lithium-ion battery.
J Colloid Interface Sci. 2024 Sep 15;670:204-214. doi: 10.1016/j.jcis.2024.05.081. Epub 2024 May 15.
10
Interface Engineering of Silicon/Carbon Thin-Film Anodes for High-Rate Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2020 Jul 1;12(26):29242-29252. doi: 10.1021/acsami.0c05140. Epub 2020 Jun 22.

引用本文的文献

2
Unveiling BaTiO-SrTiO as Anodes for Highly Efficient and Stable Lithium-Ion Batteries.
Nanomaterials (Basel). 2024 Oct 29;14(21):1723. doi: 10.3390/nano14211723.

本文引用的文献

2
Boron-Silicon Alloy Nanoparticles as a Promising New Material in Lithium-Ion Battery Anodes.
ACS Energy Lett. 2024 May 2;9(6):2492-2499. doi: 10.1021/acsenergylett.4c00856. eCollection 2024 Jun 14.
5
Bimetallic Cobalt-Nickel Selenide Nanocubes Embedded in a Nitrogen-Doped Carbon Matrix as an Excellent Li-Ion Battery Anode.
ACS Appl Mater Interfaces. 2023 May 31;15(21):25536-25549. doi: 10.1021/acsami.3c02865. Epub 2023 May 18.
7
Building Practical High-Voltage Cathode Materials for Lithium-Ion Batteries.
Adv Mater. 2022 Dec;34(52):e2200912. doi: 10.1002/adma.202200912. Epub 2022 Aug 5.
8
9
Progress of Binder Structures in Silicon-Based Anodes for Advanced Lithium-Ion Batteries: A Mini Review.
Front Chem. 2021 Oct 12;9:712225. doi: 10.3389/fchem.2021.712225. eCollection 2021.
10
In Situ-Formed Novel Elastic Network Binder for a Silicon Anode in Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2021 Oct 6;13(39):46518-46525. doi: 10.1021/acsami.1c09607. Epub 2021 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验