Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China.
Nanoscale Horiz. 2022 Oct 24;7(11):1299-1339. doi: 10.1039/d2nh00313a.
Armed with the merits of one-dimensional nanostructures (flexibility, high aspect ratio, and anisotropy) and metals (high conductivity, plasmonic properties, and catalytic activity), metal nanowires (MNWs) have stood out as a new class of nanomaterials in the last two decades. They are envisaged to expedite significantly and even revolutionize a broad spectrum of applications related to display, sensing, energy, plasmonics, photonics, and catalysis. Compared with disordered MNWs, well-organized MNWs would not only enhance the intrinsic physical and chemical properties, but also create new functions and sophisticated architectures of optoelectronic devices. This paper presents a comprehensive review of assembly strategies of MNWs, including self-assembly for specific structures, alignment for anisotropic constructions, and patterning for precise configurations. The technical processes, underlying mechanisms, performance indicators, and representative applications of these strategies are described and discussed to inspire further innovation in assembly techniques and guide the fabrication of optoelectrical devices. Finally, a perspective on the critical challenges and future opportunities of MNW assembly is provided.
在一维纳米结构(灵活性、高纵横比和各向异性)和金属(高导电性、等离子体特性和催化活性)的优势的武装下,金属纳米线(MNW)在过去二十年中脱颖而出,成为一类新型纳米材料。它们有望显著加速,甚至彻底改变与显示、传感、能源、等离子体学、光子学和催化相关的广泛应用。与无序 MNW 相比,组织良好的 MNW 不仅可以增强固有物理和化学性质,还可以为光电设备创造新的功能和复杂的结构。本文全面综述了 MNW 的组装策略,包括特定结构的自组装、各向异性结构的取向和精确结构的图案化。描述和讨论了这些策略的技术流程、潜在机制、性能指标和代表性应用,以激发组装技术的进一步创新,并指导光电设备的制造。最后,提供了对 MNW 组装的关键挑战和未来机遇的展望。