Wang Hongteng, Li Haichuan, Xin Yijia, Chen Weizhen, Liu Haogeng, Chen Ying, Chen Yaofei, Chen Lei, Luo Yunhan, Chen Zhe, Liu Gui-Shi
College of Physical & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, WC2R 2LS, UK.
Microsyst Nanoeng. 2025 May 19;11(1):96. doi: 10.1038/s41378-025-00945-z.
As transparent electrodes, patterned silver nanowire (AgNW) networks suffer from noticeable pattern visibility, which is an unsettled issue for practical applications such as display. Here, we introduce a Gibbs-Thomson effect (GTE)-based patterning method to effectively reduce pattern visibility. Unlike conventional top-down and bottom-up strategies that rely on selective etching, removal, or deposition of AgNWs, our approach focuses on fragmenting nanowires primarily at the junctions through the GTE. This is realized by modifying AgNWs with a compound of diphenyliodonium nitrate and silver nitrate, which aggregates into nanoparticles at the junctions of AgNWs. These nanoparticles can boost the fragmentation of nanowires at the junctions under an ultralow temperature (75 °C), allow pattern transfer through a photolithographic masking operation, and enhance plasmonic welding during UV exposure. The resultant patterned electrodes have trivial differences in transmittance (ΔT = 1.4%) and haze (ΔH = 0.3%) between conductive and insulative regions, with high-resolution patterning size down to 10 μm. To demonstrate the practicality of this novel method, we constructed a highly transparent, optoelectrical interactive tactile e-skin using the patterned AgNW electrodes.
作为透明电极,图案化银纳米线(AgNW)网络存在明显的图案可见性问题,这对于诸如显示器等实际应用来说是一个尚未解决的问题。在此,我们引入一种基于吉布斯-汤姆逊效应(GTE)的图案化方法,以有效降低图案可见性。与依赖于AgNWs的选择性蚀刻、去除或沉积的传统自上而下和自下而上策略不同,我们的方法主要通过GTE使纳米线在节点处断裂。这是通过用硝酸二苯基碘鎓和硝酸银的化合物修饰AgNWs来实现的,该化合物在AgNWs的节点处聚集形成纳米颗粒。这些纳米颗粒可以在超低温(75 °C)下促进纳米线在节点处的断裂,通过光刻掩膜操作实现图案转移,并在紫外线照射期间增强等离子体焊接。所得的图案化电极在导电区域和绝缘区域之间的透过率(ΔT = 1.4%)和雾度(ΔH = 0.3%)方面差异很小,具有低至10 μm的高分辨率图案化尺寸。为了证明这种新方法的实用性,我们使用图案化的AgNW电极构建了一种高度透明的光电交互式触觉电子皮肤。