Suppr超能文献

模拟脑动脉瘤的力学微环境。

Modeling the Mechanical Microenvironment of Coiled Cerebral Aneurysms.

机构信息

Department of Neurological Surgery, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104.

Department of Mechanical Engineering, University of Washington, 3900 East Stevens Way NE, Box 352600, Seattle, WA 98195.

出版信息

J Biomech Eng. 2023 Apr 1;145(4). doi: 10.1115/1.4055857.

Abstract

Successful occlusion of cerebral aneurysms using coil embolization is contingent upon stable thrombus formation, and the quality of the thrombus depends upon the biomechanical environment. The goal of this study was to investigate how coil embolization alters the mechanical micro-environment within the aneurysm dome. Inertialess particles were injected in three-dimensional, computational simulations of flow inside patient aneurysms using patient-specific boundary conditions. Coil embolization was simulated as a homogenous porous medium of known permeability and inertial constant. Lagrangian particle tracking was used to calculate the residence time and shear stress history for particles in the flow before and after treatment. The percentage of particles entering the aneurysm dome correlated with the neck surface area before and after treatment (pretreatment: R2 = 0.831, P < 0.001; post-treatment: R2 = 0.638, P < 0.001). There was an inverse relationship between the change in particles entering the dome and coil packing density (R2 = 0.600, P < 0.001). Following treatment, the particles with the longest residence times tended to remain within the dome even longer while accumulating lower shear stress. A significant correlation was observed between the treatment effect on residence time and the ratio of the neck surface area to porosity (R2 = 0.390, P = 0.007). The results of this study suggest that coil embolization triggers clot formation within the aneurysm dome via a low shear stress-mediated pathway. This hypothesis links independently observed findings from several benchtop and clinical studies, furthering our understanding of this treatment strategy.

摘要

成功地使用线圈栓塞来闭塞脑动脉瘤取决于稳定的血栓形成,而血栓的质量取决于生物力学环境。本研究的目的是调查线圈栓塞如何改变动脉瘤瘤顶内的机械微环境。使用基于患者的边界条件,在患者动脉瘤内的流场的三维计算模拟中注入无惯性粒子。将线圈栓塞模拟为具有已知渗透性和惯性常数的均质多孔介质。使用拉格朗日粒子跟踪法来计算治疗前后粒子在流动中的停留时间和剪切应力历史。进入动脉瘤瘤顶的粒子百分比与治疗前后的颈部表面积相关(治疗前:R2=0.831,P<0.001;治疗后:R2=0.638,P<0.001)。进入瘤顶的粒子变化与线圈填充密度呈反比(R2=0.600,P<0.001)。治疗后,具有最长停留时间的粒子往往会在更长的时间内保持在瘤顶内,同时积累的剪切应力更低。治疗对停留时间的影响与颈部表面积与孔隙率的比值之间存在显著相关性(R2=0.390,P=0.007)。本研究的结果表明,线圈栓塞通过低剪切应力介导的途径触发动脉瘤瘤顶内的血栓形成。该假设将来自几个台架和临床研究的独立观察结果联系起来,进一步加深了我们对这种治疗策略的理解。

相似文献

1
Modeling the Mechanical Microenvironment of Coiled Cerebral Aneurysms.
J Biomech Eng. 2023 Apr 1;145(4). doi: 10.1115/1.4055857.
2
Aneurysm permeability following coil embolization: packing density and coil distribution.
J Neurointerv Surg. 2015 Sep;7(9):676-81. doi: 10.1136/neurintsurg-2014-011289. Epub 2014 Jul 16.
3
CFD modeling of blood flow following coil embolization of aneurysms.
Med Eng Phys. 2004 Nov;26(9):755-61. doi: 10.1016/j.medengphy.2004.06.008.
4
Local thrombus formation at the coil-parent artery interface during endovascular coil embolization of cerebral aneurysms.
J Neurol Surg A Cent Eur Neurosurg. 2012 Nov;73(6):358-68. doi: 10.1055/s-0032-1315794. Epub 2012 Jul 5.
6
Towards Prediction of Blood Flow in Coiled Aneurysms Before Treatment: A Porous Media Approach.
Ann Biomed Eng. 2023 Dec;51(12):2785-2801. doi: 10.1007/s10439-023-03340-9. Epub 2023 Aug 19.
8
9
LVIS Blue as a low porosity stent and coil adjuvant.
J Neurointerv Surg. 2018 Jul;10(7):682-686. doi: 10.1136/neurintsurg-2017-013608. Epub 2018 Jan 13.
10
Mechanisms of Healing in Coiled Intracranial Aneurysms: A Review of the Literature.
AJNR Am J Neuroradiol. 2015 Jul;36(7):1216-22. doi: 10.3174/ajnr.A4175. Epub 2014 Nov 27.

引用本文的文献

1
Exploring the hemodynamic behavior of residual aneurysms after coiling and clipping: A computational flow dynamic analysis.
Surg Neurol Int. 2024 Oct 18;15:376. doi: 10.25259/SNI_686_2024. eCollection 2024.
2
Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms.
Med Phys. 2024 Feb;51(2):1499-1508. doi: 10.1002/mp.16926. Epub 2023 Dec 27.
3
Improving the accuracy of computational fluid dynamics simulations of coiled cerebral aneurysms using finite element modeling.
J Biomech. 2023 Aug;157:111733. doi: 10.1016/j.jbiomech.2023.111733. Epub 2023 Jul 19.

本文引用的文献

1
Thrombus Structural Composition in Cardiovascular Disease.
Arterioscler Thromb Vasc Biol. 2021 Sep;41(9):2370-2383. doi: 10.1161/ATVBAHA.120.315754. Epub 2021 Jul 15.
4
Interplay between platelets and coagulation.
Blood Rev. 2021 Mar;46:100733. doi: 10.1016/j.blre.2020.100733. Epub 2020 Jul 12.
5
Platelet Dynamics and Hemodynamics of Cerebral Aneurysms Treated with Flow-Diverting Stents.
Ann Biomed Eng. 2020 Jan;48(1):490-501. doi: 10.1007/s10439-019-02368-0. Epub 2019 Sep 23.
6
Computational fluid dynamics as a risk assessment tool for aneurysm rupture.
Neurosurg Focus. 2019 Jul 1;47(1):E12. doi: 10.3171/2019.4.FOCUS19189.
7
A critical comparison of different residence time measures in aneurysms.
J Biomech. 2019 May 9;88:122-129. doi: 10.1016/j.jbiomech.2019.03.028. Epub 2019 Mar 27.
8
Small Left Ventricular Size Is an Independent Risk Factor for Ventricular Assist Device Thrombosis.
ASAIO J. 2019 Feb;65(2):152-159. doi: 10.1097/MAT.0000000000000798.
9
Computational fluid dynamics (CFD) using porous media modeling predicts recurrence after coiling of cerebral aneurysms.
PLoS One. 2017 Dec 28;12(12):e0190222. doi: 10.1371/journal.pone.0190222. eCollection 2017.
10
A new combined parameter predicts re-treatment for coil-embolized aneurysms: a computational fluid dynamics multivariable analysis study.
J Neurointerv Surg. 2018 Aug;10(8):791-796. doi: 10.1136/neurintsurg-2017-013433. Epub 2017 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验