Huang Jieying, Xi Yang, Hu Junnan, Tao Jun
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):1200-1210. doi: 10.1109/TVCG.2022.3209453. Epub 2022 Dec 16.
Flow visualization is essentially a tool to answer domain experts' questions about flow fields using rendered images. Static flow visualization approaches require domain experts to raise their questions to visualization experts, who develop specific techniques to extract and visualize the flow structures of interest. Interactive visualization approaches allow domain experts to ask the system directly through the visual analytic interface, which provides flexibility to support various tasks. However, in practice, the visual analytic interface may require extra learning effort, which often discourages domain experts and limits its usage in real-world scenarios. In this paper, we propose FlowNL, a novel interactive system with a natural language interface. FlowNL allows users to manipulate the flow visualization system using plain English, which greatly reduces the learning effort. We develop a natural language parser to interpret user intention and translate textual input into a declarative language. We design the declarative language as an intermediate layer between the natural language and the programming language specifically for flow visualization. The declarative language provides selection and composition rules to derive relatively complicated flow structures from primitive objects that encode various kinds of information about scalar fields, flow patterns, regions of interest, connectivities, etc. We demonstrate the effectiveness of FlowNL using multiple usage scenarios and an empirical evaluation.
流动可视化本质上是一种利用渲染图像来回答领域专家关于流场问题的工具。静态流动可视化方法要求领域专家向可视化专家提出问题,可视化专家则开发特定技术来提取并可视化感兴趣的流动结构。交互式可视化方法允许领域专家通过视觉分析界面直接向系统提问,该界面提供了支持各种任务的灵活性。然而,在实践中,视觉分析界面可能需要额外的学习成本,这常常使领域专家望而却步,并限制了其在实际场景中的使用。在本文中,我们提出了FlowNL,一种具有自然语言界面的新型交互式系统。FlowNL允许用户使用简单英语来操作流动可视化系统,这大大降低了学习成本。我们开发了一种自然语言解析器来解释用户意图,并将文本输入转换为一种声明性语言。我们将声明性语言设计为自然语言和编程语言之间的中间层,专门用于流动可视化。声明性语言提供了选择和组合规则,以便从编码有关标量场、流动模式、感兴趣区域、连通性等各种信息的原始对象中派生相对复杂的流动结构。我们使用多个使用场景和实证评估来证明FlowNL的有效性。
IEEE Trans Vis Comput Graph. 2023-1
IEEE Trans Vis Comput Graph. 2019-8-20
Cochrane Database Syst Rev. 2022-2-1
IEEE Comput Graph Appl. 2023
IEEE Trans Vis Comput Graph. 2023-1
IEEE Trans Vis Comput Graph. 2010
IEEE Trans Vis Comput Graph. 2020-1
Artif Intell Med. 2011-12-15
IEEE Trans Vis Comput Graph. 2021-2
Comput Graph Forum. 2023-6