Suppr超能文献

Fundamentals behind the specificity of Cysteinyl-tRNA synthetase: MD and QM/MM joint investigations.

作者信息

Chen Binbin, Mansour Basel, Zheng En, Liu Yingchun, Gauld James W, Wang Qi

机构信息

Department of Chemistry, Zhejiang University, Hangzhou, China.

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.

出版信息

Proteins. 2023 Mar;91(3):354-362. doi: 10.1002/prot.26433. Epub 2022 Oct 11.

Abstract

Cysteinyl-tRNA synthetase (CysRS) catalyzes the aminoacylation reaction of cysteine to its cognate tRNA in the first step of protein translation. It is found that CysRS is different from other aaRSs as it transfers cysteine without the need for an editing reaction, which is not applicable in the case of serine despite the similarity in their structures. Surprisingly, the reasons why CysRS has high amino acid specificity are not clear yet. In this research, the binding configurations of Cys-AMP and its near-cognate amino acid Ser-AMP with CysRS are compared by Molecular Dynamics (MD). The results reveal that CysRS screens the substrate Cys-AMP to a certain extent in the process of combination and recognition, thus providing a guarantee for the high selectivity of the next reaction. While Ser-AMP is in a folded state in CysRS. In the meanwhile, the interaction between Cys-AMP and Zn963 in CysRS is much stronger than Ser-AMP. The substrate-assisted aminoacylation mechanism in CysRS is also explored by Quantum Mechanics/Molecular Mechanics (QM/MM) modeling. According to the QM/MM potential energies, the energy barrier of TS is 91.75 kJ/mol, while that of TS is close to 150 kJ/mol. Based on thermochemistry calculations, it is found that the product of Cys-AMP is more stable than the reactant. In contrast, Ser-AMP has a reactant that is more stable than its product. As a result, it reflects that the specificity of CysRS originates from both the kinetic and thermodynamical perspectives of the reaction. Our investigations demonstrate comprehensively on how CysRS recognizes and catalyzes the substrate Cys-AMP, hoping to provide some guidance for researchers in this area.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验