Suppr超能文献

An Efficient and Adaptive Granular-Ball Generation Method in Classification Problem.

作者信息

Xia Shuyin, Dai Xiaochuan, Wang Guoyin, Gao Xinbo, Giem Elisabeth

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5319-5331. doi: 10.1109/TNNLS.2022.3203381. Epub 2024 Apr 4.

Abstract

Granular-ball computing (GBC) is an efficient, robust, and scalable learning method for granular computing. The granular ball (GB) generation method is based on GB computing. This article proposes a method for accelerating GB generation using division to replace k -means. It can significantly improve the efficiency of GB generation while ensuring an accuracy similar to that of the existing methods. In addition, a new adaptive method for GB generation is proposed by considering the elimination of the GB overlap and other factors. This makes the GB generation process parameter-free and completely adaptive in the true sense. In addition, this study first provides mathematical models for the GB covering. The experimental results on some real datasets demonstrate that the two proposed GB generation methods have accuracies similar to those of the existing method in most cases, while adaptiveness or acceleration is realized. All the codes were released in the open-source GBC library at https://www.cquptshuyinxia.com/GBC.html or https://github.com/syxiaa/gbc.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验