Biomolecular Formulation and Characterisation Sciences, UCB, Slough, UK.
MAbs. 2022 Jan-Dec;14(1):2127172. doi: 10.1080/19420862.2022.2127172.
Monoclonal antibody (mAb) aggregation can present major challenges for the development of biotherapeutics. An understanding of the molecular mechanisms of mAb aggregation is highly desirable both because it allows the performance of informed risk assessments regarding the criticality of mAb aggregates and because it may facilitate rational stabilization of aggregation prone regions. Here, we report the generation and isolation of dimer species of an IgG4 mAb (mAb1) that were present in stressed material under differing levels of temperature stress. We demonstrate the power of combining established higher order techniques with non-routine analysis, such as small-angle X-ray scattering, hydrogen/deuterium exchange mass spectrometry (HDX-MS), and protein conformational array enzyme-linked immunosorbent assay (PCA ELISA), and show that dimer species formed under temperature stress are structurally distinct from those present in unstressed mAb1. Specifically, stress-induced dimers are shown to adopt a more elongated conformation with a greater degree of unfolding when compared to native dimers. Analysis by HDX-MS and PCA ELISA, supported by shape and charge molecular docking, enabled the identification of residues in both the variable and constant domains that appear to play a significant role in the dimerization of mAb1. Furthermore, we show that dimers formed under temperature stress are significantly more long-lived than those present in unstressed mAb1. We also present evidence that mAb1 dimers can behave as aggregation nuclei, and that dimers produced under high-temperature stress do so to a greater extent. This work presents an advancement in our understanding of the molecular mechanisms of mAb aggregation and highlights the importance of structural characterization of dimer species during the development of mAb biotherapeutics. 2DSA: 2-Dimensional Spectrum Analysis; CD: Circular Dichroism; CDR: Complementarity-Determining Region; CQA: Critical Quality Attribute; DSC: Differential Scanning Calorimetry; FTIR: Fourier Transform Infrared spectroscopy; HDX-MS: Hydrogen/Deuterium Exchange Mass Spectrometry; HIC: Hydrophobic interaction chromatography; HMWS: High Molecular Weight Species; HOS: Higher Order Structure; mAb: Monoclonal Antibody; MD: Molecular Dynamics PCA; ELISA: Protein Conformational Array Enzyme-Linked Immunosorbent Assay; Rg: Radius of Gyration; SAXS: Small Angle X-ray Scattering; SE-HPLC: Size Exclusion High Performance Liquid Chromatography; SV-AUC: Sedimentation Velocity-Analytical Ultracentrifugation.
单克隆抗体 (mAb) 聚集会给生物治疗药物的开发带来重大挑战。了解 mAb 聚集的分子机制是非常理想的,因为它不仅可以对 mAb 聚集的关键性进行知情风险评估,还可以促进对聚集倾向区域的合理稳定。在这里,我们报告了 IgG4 mAb (mAb1) 的二聚体的产生和分离,这些二聚体存在于不同温度应激水平下的应激材料中。我们证明了结合已建立的高阶技术与非常规分析的能力,例如小角 X 射线散射、氢/氘交换质谱 (HDX-MS) 和蛋白质构象阵列酶联免疫吸附测定 (PCA ELISA),并表明在温度应激下形成的二聚体在结构上与未受应激的 mAb1 中的二聚体不同。具体来说,与天然二聚体相比,应激诱导的二聚体表现出更伸展的构象和更大程度的展开。通过 HDX-MS 和 PCA ELISA 进行的分析,辅以形状和电荷分子对接,确定了可变和恒定结构域中的残基,这些残基似乎在 mAb1 的二聚化中起着重要作用。此外,我们表明,在温度应激下形成的二聚体比未受应激的 mAb1 中的二聚体更稳定。我们还提供了证据表明,mAb1 二聚体可以作为聚集核,并且在高温应激下产生的二聚体更为显著。这项工作增进了我们对 mAb 聚集的分子机制的理解,并强调了在开发 mAb 生物治疗药物过程中对二聚体结构特征进行表征的重要性。2DSA:二维谱分析;CD:圆二色性;CDR:互补决定区;CQA:关键质量属性;DSC:差示扫描量热法;FTIR:傅里叶变换红外光谱;HDX-MS:氢/氘交换质谱;HIC:疏水相互作用色谱;HMWS:高分子量物种;HOS:高阶结构;mAb:单克隆抗体;MD:分子动力学;PCA:蛋白质构象阵列酶联免疫吸附测定;Rg:回转半径;SAXS:小角 X 射线散射;SE-HPLC:尺寸排阻高效液相色谱;SV-AUC:沉降速度-分析超速离心。