Suppr超能文献

在芯片肠道模型中评估人类性能辅助的活合成工程细菌

Evaluation of Human Performance Aiding Live Synthetically Engineered Bacteria in a Gut-on-a-Chip.

作者信息

Nelson M Tyler, Coia Heidi G, Holt Corey, Greenwood Eric S, Narayanan Latha, Robinson Peter J, Merrill Elaine A, Litteral Vaughn, Goodson Michael S, Saldanha Roland J, Grogg Matthew W, Mauzy Camilla A

机构信息

United States Air Force Research Laboratory, 711th Human Performance Wing, 2510 N 5th Street, Bldg. 840, Wright-Patterson AFB, Ohio 45433, United States.

National Research Council, The National Academies of Sciences, Engineering, and Medicine, 500 Fifth Street N.W., Washington, D.C. 20001, United States.

出版信息

ACS Biomater Sci Eng. 2023 Sep 11;9(9):5136-5150. doi: 10.1021/acsbiomaterials.2c00774. Epub 2022 Oct 5.

Abstract

Synbiotics are a new class of live therapeutics employing engineered genetic circuits. The rapid adoption of genetic editing tools has catalyzed the expansion of possible synbiotics, exceeding traditional testing paradigms in terms of both throughput and model complexity. Herein, we present a simplistic gut-chip model using common Caco2 and HT-29 cell lines to establish a dynamic human screening platform for a cortisol sensing tryptamine producing synbiotic for cognitive performance sustainment. The synbiotic, SYN, was engineered from the common probiotic Nissle 1917 strain. It had the ability to sense cortisol at physiological concentrations, resulting in the activation of a genetic circuit that produces tryptophan decarboxylase and converts bioavailable tryptophan to tryptamine. SYN was successfully cultivated within the gut-chip showing log-phase growth comparable to the wild-type strain. Tryptophan metabolism occurred quickly in the gut compartment when exposed to 5 μM cortisol, resulting in the complete conversion of bioavailable tryptophan into tryptamine. The flux of tryptophan and tryptamine from the gut to the vascular compartment of the chip was delayed by 12 h, as indicated by the detectable tryptamine in the vascular compartment. The gut-chip provided a stable environment to characterize the sensitivity of the cortisol sensor and dynamic range by altering cortisol and tryptophan dosimetry. Collectively, the human gut-chip provided human relevant apparent permeability to assess tryptophan and tryptamine metabolism, production, and transport, enabled host analyses of cellular viability and pro-inflammatory cytokine secretion, and succeeded in providing an efficacy test of a novel synbiotic. Organ-on-a-chip technology holds promise in aiding traditional therapeutic pipelines to more rapidly down select high potential compounds that reduce the failure rate and accelerate the opportunity for clinical intervention.

摘要

合生元是一类采用工程化基因回路的新型活疗法。基因编辑工具的迅速应用推动了合生元种类的扩展,在通量和模型复杂性方面都超越了传统测试模式。在此,我们展示了一种简单的肠道芯片模型,该模型使用常见的Caco2和HT - 29细胞系,为一种用于维持认知功能的可感知皮质醇并产生色胺的合生元建立了一个动态人体筛选平台。合生元SYN由常见的益生菌Nissle 1917菌株改造而来。它能够感知生理浓度的皮质醇,从而激活一个产生色氨酸脱羧酶的基因回路,并将生物可利用的色氨酸转化为色胺。SYN在肠道芯片中成功培养,其对数期生长与野生型菌株相当。当暴露于5 μM皮质醇时,肠道隔室中的色氨酸代谢迅速发生,导致生物可利用的色氨酸完全转化为色胺。芯片血管隔室中可检测到色胺,这表明色氨酸和色胺从肠道到血管隔室的通量延迟了12小时。肠道芯片通过改变皮质醇和色氨酸剂量提供了一个稳定的环境来表征皮质醇传感器的灵敏度和动态范围。总体而言,人体肠道芯片提供了与人体相关的表观渗透率,以评估色氨酸和色胺的代谢、产生和运输,能够对细胞活力和促炎细胞因子分泌进行宿主分析,并成功地对一种新型合生元进行了功效测试。芯片上器官技术有望帮助传统治疗流程更快地筛选出高潜力化合物,从而降低失败率并加速临床干预的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验