Suppr超能文献

金属-半导体界面电子-声子耦合与电子热输运的结构测量

Structural measurement of electron-phonon coupling and electronic thermal transport across a metal-semiconductor interface.

作者信息

Jo Wonhyuk, Kee Jungyun, Kim Kooktea, Landahl Eric C, Longbons Grace, Walko Donald A, Wen Haidan, Lee Dong Ryeol, Lee Sooheyong

机构信息

Korea Research Institute of Standards and Science, Daejeon, 305-340, South Korea.

Department of Physics, Soongsil University, Seoul, 06978, South Korea.

出版信息

Sci Rep. 2022 Oct 5;12(1):16606. doi: 10.1038/s41598-022-20715-5.

Abstract

Scattering of energetic charge carriers and their coupling to lattice vibrations (phonons) in dielectric materials and semiconductors are crucial processes that determine the functional limits of optoelectronics, photovoltaics, and photocatalysts. The strength of these energy exchanges is often described by the electron-phonon coupling coefficient, which is difficult to measure due to the microscopic time- and length-scales involved. In the present study, we propose an alternate means to quantify the coupling parameter along with thermal boundary resistance and electron conductivity by performing a high angular-resolution time-resolved X-ray diffraction measurement of propagating lattice deformation following laser excitation of a nanoscale, polycrystalline metal film on a semiconductor substrate. Our data present direct experimental evidence for identifying the ballistic and diffusive transport components occurring at the interface, where only the latter participates in thermal diffusion. This approach provides a robust measurement that can be applied to investigate microscopic energy transport in various solid-state materials.

摘要

在介电材料和半导体中,高能电荷载流子的散射及其与晶格振动(声子)的耦合是决定光电子学、光伏和光催化剂功能极限的关键过程。这些能量交换的强度通常由电子 - 声子耦合系数来描述,由于涉及微观的时间和长度尺度,该系数难以测量。在本研究中,我们提出了一种替代方法,通过对半导体衬底上的纳米级多晶金属薄膜进行激光激发后传播晶格变形的高角分辨率时间分辨X射线衍射测量,来量化耦合参数以及热边界电阻和电子电导率。我们的数据提供了直接的实验证据,用于识别在界面处发生的弹道和扩散传输分量,其中只有后者参与热扩散。这种方法提供了一种可靠的测量手段,可用于研究各种固态材料中的微观能量传输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a71/9534889/2d114efbdf98/41598_2022_20715_Fig1_HTML.jpg

相似文献

2
Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
J Phys Condens Matter. 2015 Jan 14;27(1):015007. doi: 10.1088/0953-8984/27/1/015007. Epub 2014 Nov 26.
4
Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe_{2}.
Phys Rev Lett. 2017 Jul 21;119(3):036803. doi: 10.1103/PhysRevLett.119.036803.
6
Distinct Signatures of Electron-Phonon Coupling Observed in the Lattice Thermal Conductivity of NbSe Nanowires.
Nano Lett. 2019 Jan 9;19(1):415-421. doi: 10.1021/acs.nanolett.8b04206. Epub 2018 Dec 14.
7
9
Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
Acc Chem Res. 2013 Jun 18;46(6):1348-57. doi: 10.1021/ar300189j. Epub 2013 Jan 31.

引用本文的文献

本文引用的文献

1
Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KVSb.
Nat Commun. 2022 Jan 12;13(1):273. doi: 10.1038/s41467-021-27946-6.
2
Electron-Phonon Coupling Parameter of Ferromagnetic Metal Fe and Co.
Materials (Basel). 2021 May 23;14(11):2755. doi: 10.3390/ma14112755.
4
Direct Measurement of Electron-Phonon Coupling with Time-Resolved ARPES.
Phys Rev Lett. 2020 Sep 25;125(13):136401. doi: 10.1103/PhysRevLett.125.136401.
5
Spectral mapping of thermal conductivity through nanoscale ballistic transport.
Nat Nanotechnol. 2015 Aug;10(8):701-6. doi: 10.1038/nnano.2015.109. Epub 2015 Jun 1.
6
8
Determining phonon mean free paths from observations of quasiballistic thermal transport.
Phys Rev Lett. 2012 Nov 16;109(20):205901. doi: 10.1103/PhysRevLett.109.205901. Epub 2012 Nov 13.
9
Thermal conductivity spectroscopy technique to measure phonon mean free paths.
Phys Rev Lett. 2011 Aug 26;107(9):095901. doi: 10.1103/PhysRevLett.107.095901. Epub 2011 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验