Karna Pravin, Giri Ashutosh
Department of Mechanical Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, United States of America.
J Phys Condens Matter. 2024 May 24;36(34). doi: 10.1088/1361-648X/ad4adb.
We report on the thermal transport properties of noble metals (gold, silver and copper) under conditions of extremely high electron temperatures (that are on the order of the Fermi energy). We perform parameter-free density functional theory calculations of the electron temperature-dependent electron-phonon coupling, electronic heat capacities, and thermal conductivities to elucidate the strong role played by the excitation of the low lying-bands on the transport properties of the noble metals. Our calculations show that, although the three metals have similar electronic band structures, the changes in their electron-phonon coupling at elevated electron temperatures are drastically different; while electron-phonon coupling decreases in gold, it increases in copper and, it remains relatively unperturbed for silver with increasing electron temperatures of up to ∼60 000 K (or 5 eV). We attribute this to the varying contributions from acoustic and longitudinal phonon modes to the electron-phonon coupling in the three metals. Although their electron-phonon coupling changes with electron temperature, the thermal conductivity trends with electron temperature are similar for all three metals. For instance, the thermal conductivities for all three metals reach their maximum values (on par with the room-temperature values of some of the most thermally conductive semiconductors) at electron temperatures of ∼6000 K, and thereafter monotonically decrease due to the enhanced effect of electron-electron scattering for electronic states that are further away from the Fermi energy. As such, only accounting for electron-phonon coupling and neglecting electron-electron scattering can lead to large over-predictions of the thermal conductivities at extremely high electron temperatures. Our results shed light on the microscopic understanding of the electronic scattering mechanisms and thermal transport in noble metals under conditions of extremely high electron temperatures and, as such, are significant for a plethora of applications such as in plasmonic devices that routinely leverage hot electron transport.
我们报告了贵金属(金、银和铜)在极高电子温度(约为费米能量量级)条件下的热输运性质。我们进行了与电子温度相关的电子 - 声子耦合、电子热容和热导率的无参数密度泛函理论计算,以阐明低能带激发对贵金属输运性质所起的重要作用。我们的计算表明,尽管这三种金属具有相似的电子能带结构,但在升高的电子温度下它们的电子 - 声子耦合变化却截然不同;随着电子温度升高至约60000K(或5eV),金的电子 - 声子耦合减小,铜的电子 - 声子耦合增加,而银的电子 - 声子耦合相对保持不变。我们将此归因于三种金属中声学和纵向声子模式对电子 - 声子耦合的贡献不同。尽管它们的电子 - 声子耦合随电子温度变化,但所有三种金属的热导率随电子温度的趋势相似。例如,在电子温度约为6000K时,所有三种金属的热导率均达到其最大值(与一些热导率最高的半导体的室温值相当),此后由于远离费米能量的电子态的电子 - 电子散射增强效应,热导率单调下降。因此,仅考虑电子 - 声子耦合而忽略电子 - 电子散射会导致在极高电子温度下对热导率的大幅高估。我们的结果为在极高电子温度条件下对贵金属中电子散射机制和热输运的微观理解提供了启示,因此对于诸如常规利用热电子输运的等离子体器件等众多应用具有重要意义。