多样性很重要:用于串联质谱分析一大组 N-糖肽的最佳碰撞能。
Diversity Matters: Optimal Collision Energies for Tandem Mass Spectrometric Analysis of a Large Set of N-Glycopeptides.
机构信息
MS Proteomics Research Group, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest H-1117, Hungary.
Chemical Works of Gedeon Richter Plc, Gyömríi út 19-21, Budapest 1103, Hungary.
出版信息
J Proteome Res. 2022 Nov 4;21(11):2743-2753. doi: 10.1021/acs.jproteome.2c00519. Epub 2022 Oct 6.
Identification and characterization of N-glycopeptides from complex samples are usually based on tandem mass spectrometric measurements. Experimental settings, especially the collision energy selection method, fundamentally influence the obtained fragmentation pattern and hence the confidence of the database search results ("score"). Using standards of naturally occurring glycoproteins, we mapped the Byonic and pGlyco search engine scores of almost 200 individual N-glycopeptides as a function of collision energy settings on a quadrupole time of flight instrument. The resulting unprecedented amount of peptide-level information on such a large and diverse set of N-glycopeptides revealed that the peptide sequence heavily influences the energy for the highest score on top of an expected general linear trend with /. Search engine dependence may also be noteworthy. Based on the trends, we designed an experimental method and tested it on HeLa, blood plasma, and monoclonal antibody samples. As compared to the literature, these notably lower collision energies in our workflow led to 10-50% more identified N-glycopeptides, with higher scores. We recommend a simple approach based on a small set of reference N-glycopeptides easily accessible from glycoprotein standards to ease the precise determination of optimal methods on other instruments. Data sets can be accessed via the MassIVE repository (MSV000089657 and MSV000090218).
从复杂样品中鉴定和表征 N-糖肽通常基于串联质谱测量。实验设置,特别是碰撞能选择方法,从根本上影响所获得的片段模式,从而影响数据库搜索结果的可信度(“得分”)。使用天然糖蛋白的标准品,我们在四极杆飞行时间仪器上绘制了将近 200 个单个 N-糖肽的 Byonic 和 pGlyco 搜索引擎得分作为碰撞能设置的函数。如此大量的肽级信息对于如此庞大和多样化的 N-糖肽集,结果前所未有,表明肽序列强烈影响最高得分的能量,除了预期的一般线性趋势外。搜索引擎的依赖性也可能值得注意。基于这些趋势,我们设计了一种实验方法,并在 HeLa、血浆和单克隆抗体样品上进行了测试。与文献相比,我们工作流程中的这些明显更低的碰撞能导致鉴定出的 N-糖肽增加了 10-50%,得分更高。我们建议采用一种简单的方法,基于一组从糖蛋白标准品中容易获得的参考 N-糖肽,以方便在其他仪器上精确确定最佳方法。数据集可通过 MassIVE 存储库(MSV000089657 和 MSV000090218)访问。