Suppr超能文献

Optimized Quantum Phase Estimation for Simulating Electronic States in Various Energy Regimes.

作者信息

Kang Christopher, Bauman Nicholas P, Krishnamoorthy Sriram, Kowalski Karol

机构信息

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99354, United States.

University of Washington, Seattle, Washington98195, United States.

出版信息

J Chem Theory Comput. 2022 Nov 8;18(11):6567-6576. doi: 10.1021/acs.jctc.2c00577. Epub 2022 Oct 6.

Abstract

While quantum algorithms for simulations exhibit better asymptotic scaling than their classical counterparts, they currently cannot be accurately implemented on real-world devices. Instead, chemists and computer scientists rely on costly classical simulations of these quantum algorithms. In particular, the quantum phase estimation (QPE) algorithm is among several approaches that has attracted much attention in recent years due to its genuine quantum character. However, it is memory-intensive to simulate and intractable for moderate system sizes. This paper discusses the performance and applicability of QPESIM, a new simulation of the QPE algorithm designed to take advantage of modest computational resources. In particular, we demonstrate the versatility of QPESIM in simulating various electronic states by examining the ground and core-level states of HO. For these states, we also discuss the effect of the active-space size on the quality of the calculated energies. For the high-energy core-level states, we demonstrate that new QPE simulations for active spaces defined by 15 active orbitals significantly reduce the errors in core-level excitation energies compared to earlier QPE simulations using smaller active spaces.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验