Suppr超能文献

生物基可编程电粘性超表面

Biobased and Programmable Electroadhesive Metasurfaces.

作者信息

Li Qinyu, Le Duigou Antoine, Guo Jianglong, Thakur Vijay Kumar, Rossiter Jonathan, Liu Liwu, Leng Jinsong, Scarpa Fabrizio

机构信息

Bristol Composites Institute, University of Bristol, BS8 1TRBristol, U.K.

Polymer and Composites, Université Bretagne Sud, IRDL UMR CNRS 6027, F-56100Lorient, France.

出版信息

ACS Appl Mater Interfaces. 2022 Oct 19;14(41):47198-47208. doi: 10.1021/acsami.2c10392. Epub 2022 Oct 6.

Abstract

Electroadhesion has shown the potential to deliver versatile handling devices because of its simplicity of actuation and rapid response. Current electroadhesion systems have, however, significant difficulties in adapting to external objects with complex shapes. Here, a novel concept of metasurface is proposed by combining the use of natural fibers (flax) and shape memory epoxy polymers in a hygromorphic and thermally actuated composite (HyTemC). The biobased material composite can be used to manipulate adhesive surfaces with high precision and controlled environmental actuation. The HyTemC concept is preprogrammed to store controllable moisture and autonomous desorption when exposed to the operational environment, and can reach predesigned bending curvatures up to 31.9 m for concave and 29.6 m for convex shapes. The actuated adhesive surface shapes are generated via the architected metasurface structure, incorporating an electroadhesive component integrated with the programmable biobased materials. This biobased metasurface stimulated by the external environment provides a large taxonomy of shapes─from flat, circular, single/double concave, and wavy, to piecewise, polynomial, trigonometric, and airfoil configurations. The objects handled by the biobased metasurface can be fragile because of the high conformal matching between contacting surfaces and the absence of compressive adhesion. These natural fiber-based and environmentally friendly electroadhesive metasurfaces can significantly improve the design of programmable object handling technologies, and also provide a sustainable route to lower the carbon and emission footprint of smart structures and robotics.

摘要

由于其驱动简单和响应迅速,电粘附已显示出提供多功能处理设备的潜力。然而,目前的电粘附系统在适应形状复杂的外部物体方面存在重大困难。在此,通过在吸湿和热驱动复合材料(HyTemC)中结合使用天然纤维(亚麻)和形状记忆环氧聚合物,提出了一种超表面的新概念。这种生物基材料复合材料可用于高精度地操纵粘附表面,并通过可控的环境驱动来实现。HyTemC概念经过预编程,可在暴露于操作环境时存储可控的水分并自动解吸,对于凹形可达到高达31.9米的预设计弯曲曲率,对于凸形可达到29.6米。通过精心设计的超表面结构产生驱动后的粘附表面形状,该结构包含与可编程生物基材料集成的电粘附组件。这种受外部环境刺激的生物基超表面提供了大量的形状分类——从平面、圆形、单/双凹形和波浪形,到分段、多项式、三角函数和翼型配置。由于接触表面之间的高度共形匹配以及不存在压缩粘附力,由生物基超表面处理的物体可能很脆弱。这些基于天然纤维且环保的电粘附超表面可以显著改进可编程物体处理技术的设计,还为降低智能结构和机器人的碳足迹和排放足迹提供了一条可持续的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8610/9585522/9078aa324622/am2c10392_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验