Suppr超能文献

SEPHS1:其进化、功能以及在发育和疾病中的作用。

SEPHS1: Its evolution, function and roles in development and diseases.

机构信息

Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea.

School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.

出版信息

Arch Biochem Biophys. 2022 Nov 15;730:109426. doi: 10.1016/j.abb.2022.109426. Epub 2022 Oct 4.

Abstract

Selenophosphate synthetase (SEPHS) was originally discovered in prokaryotes as an enzyme that catalyzes selenophosphate synthesis using inorganic selenium and ATP as substrates. However, in contrast to prokaryotes, two paralogs, SEPHS1 and SEPHS2, occur in many eukaryotes. Prokaryotic SEPHS, also known as SelD, contains either cysteine (Cys) or selenocysteine (Sec) in the catalytic domain. In eukaryotes, only SEPHS2 carries out selenophosphate synthesis and contains Sec at the active site. However, SEPHS1 contains amino acids other than Sec or Cys at the catalytic position. Phylogenetic analysis of SEPHSs reveals that the ancestral SEPHS contains both selenophosphate synthesis and another unknown activity, and that SEPHS1 lost the selenophosphate synthesis activity. The three-dimensional structure of SEPHS1 suggests that its homodimer is unable to form selenophosphate, but retains ATPase activity to produce ADP and inorganic phosphate. The most prominent function of SEPHS1 is that it is implicated in the regulation of cellular redox homeostasis. Deficiency of SEPHS1 leads to the disturbance in the expression of genes involved in redox homeostasis. Different types of reactive oxygen species (ROS) are accumulated in response to SEPHS deficiency depending on cell or tissue types. The accumulation of ROS causes pleiotropic effects such as growth retardation, apoptosis, DNA damage, and embryonic lethality. SEPHS1 deficiency in mouse embryos affects retinoic signaling and other related signaling pathways depending on the embryonal stage until the embryo dies at E11.5. Dysregulated SEPHS1 is associated with the pathogenesis of various diseases including cancer, Crohn's disease, and osteoarthritis.

摘要

硒磷酸合成酶(SEPHS)最初在原核生物中被发现,是一种使用无机硒和 ATP 作为底物催化硒磷酸合成的酶。然而,与原核生物不同的是,许多真核生物中存在两个同源物,SEPHS1 和 SEPHS2。原核生物 SEPHS,也称为 SelD,在催化结构域中含有半胱氨酸(Cys)或硒代半胱氨酸(Sec)。在真核生物中,只有 SEPHS2 进行硒磷酸合成,并且在活性位点含有 Sec。然而,SEPHS1 在催化位置含有除 Sec 或 Cys 以外的氨基酸。SEPHS 的系统发育分析表明,原始 SEPHS 含有硒磷酸合成和另一种未知活性,而 SEPHS1 失去了硒磷酸合成活性。SEPHS1 的三维结构表明,其同源二聚体无法形成硒磷酸,但保留 ATPase 活性以产生 ADP 和无机磷酸盐。SEPHS1 的最突出功能是它参与调节细胞氧化还原稳态。SEPHS1 的缺乏会导致涉及氧化还原稳态的基因表达紊乱。根据细胞或组织类型的不同,SEPHS 缺乏会导致不同类型的活性氧(ROS)的积累。ROS 的积累会导致生长迟缓、细胞凋亡、DNA 损伤和胚胎致死等多种表型效应。小鼠胚胎中 SEPHS1 的缺乏会影响视黄酸信号转导和其他相关信号通路,具体取决于胚胎发育阶段,直到胚胎在 E11.5 死亡。失调的 SEPHS1 与各种疾病的发病机制有关,包括癌症、克罗恩病和骨关节炎。

相似文献

1
SEPHS1: Its evolution, function and roles in development and diseases.
Arch Biochem Biophys. 2022 Nov 15;730:109426. doi: 10.1016/j.abb.2022.109426. Epub 2022 Oct 4.
2
Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation.
Free Radic Biol Med. 2018 Nov 1;127:190-197. doi: 10.1016/j.freeradbiomed.2018.04.577. Epub 2018 Apr 30.
3
Constitutive Oxidative Stress by SEPHS1 Deficiency Induces Endothelial Cell Dysfunction.
Int J Mol Sci. 2021 Oct 28;22(21):11646. doi: 10.3390/ijms222111646.
4
The selenophosphate synthetase family: A review.
Free Radic Biol Med. 2022 Nov 1;192:63-76. doi: 10.1016/j.freeradbiomed.2022.09.007. Epub 2022 Sep 16.
5
The role of selenium-mediated redox signaling by selenophosphate synthetase 1 (SEPHS1) in hESCs.
Biochem Biophys Res Commun. 2019 Dec 3;520(2):406-412. doi: 10.1016/j.bbrc.2019.09.123. Epub 2019 Oct 11.
9
Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs.
J Mol Biol. 2009 Feb 6;385(5):1456-69. doi: 10.1016/j.jmb.2008.08.042. Epub 2008 Aug 26.
10

引用本文的文献

1
Exploring the Neuroprotective Role of Selenium: Implications and Perspectives for Central Nervous System Disorders.
Exploration (Beijing). 2025 Apr 1;5(4):e20240415. doi: 10.1002/EXP.20240415. eCollection 2025 Aug.
3
DNA Methylation Carries Signatures of Sublethal Effects Under Thermal Stress in Loggerhead Sea Turtles.
Evol Appl. 2024 Sep 15;17(9):e70013. doi: 10.1111/eva.70013. eCollection 2024 Sep.
4
Selenoproteins in Health.
Molecules. 2023 Dec 25;29(1):136. doi: 10.3390/molecules29010136.
5
Biological and Catalytic Properties of Selenoproteins.
Int J Mol Sci. 2023 Jun 14;24(12):10109. doi: 10.3390/ijms241210109.
6
An Integrated View of Stressors as Causative Agents in OA Pathogenesis.
Biomolecules. 2023 Apr 22;13(5):721. doi: 10.3390/biom13050721.

本文引用的文献

1
Selenoprotein TXNRD3 supports male fertility via the redox regulation of spermatogenesis.
J Biol Chem. 2022 Aug;298(8):102183. doi: 10.1016/j.jbc.2022.102183. Epub 2022 Jun 23.
6
Constitutive Oxidative Stress by SEPHS1 Deficiency Induces Endothelial Cell Dysfunction.
Int J Mol Sci. 2021 Oct 28;22(21):11646. doi: 10.3390/ijms222111646.
7
Identification and Validation of a Nine-Gene Amino Acid Metabolism-Related Risk Signature in HCC.
Front Cell Dev Biol. 2021 Sep 7;9:731790. doi: 10.3389/fcell.2021.731790. eCollection 2021.
8
MEGA11: Molecular Evolutionary Genetics Analysis Version 11.
Mol Biol Evol. 2021 Jun 25;38(7):3022-3027. doi: 10.1093/molbev/msab120.
9
SEPHS1 promotes SMAD2/3/4 expression and hepatocellular carcinoma cells invasion.
Exp Hematol Oncol. 2021 Feb 23;10(1):17. doi: 10.1186/s40164-021-00212-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验