CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Qiagen, Hilden, Germany.
Nat Commun. 2022 Oct 6;13(1):5902. doi: 10.1038/s41467-022-33530-3.
Methods to reconstruct the mitochondrial DNA (mtDNA) sequence using short-read sequencing come with an inherent bias due to amplification and mapping. They can fail to determine the phase of variants, to capture multiple deletions and to cover the mitochondrial genome evenly. Here we describe a method to target, multiplex and sequence at high coverage full-length human mitochondrial genomes as native single-molecules, utilizing the RNA-guided DNA endonuclease Cas9. Combining Cas9 induced breaks, that define the mtDNA beginning and end of the sequencing reads, as barcodes, we achieve high demultiplexing specificity and delineation of the full-length of the mtDNA, regardless of the structural variant pattern. The long-read sequencing data is analysed with a pipeline where our custom-developed software, baldur, efficiently detects single nucleotide heteroplasmy to below 1%, physically determines phase and can accurately disentangle complex deletions. Our workflow is a tool for studying mtDNA variation and will accelerate mitochondrial research.
使用短读测序技术重建线粒体 DNA(mtDNA)序列存在固有偏差,这是由于扩增和映射所致。这些方法可能无法确定变体的相位,无法捕获多个缺失,也无法均匀覆盖线粒体基因组。在这里,我们描述了一种方法,利用 RNA 指导的 DNA 内切酶 Cas9 靶向、多重扩增和高通量测序全长人线粒体基因组作为天然单分子。通过 Cas9 诱导的断裂将测序读段的 mtDNA 起始和结束定义为条形码,从而实现高度的多重分馏特异性和 mtDNA 全长的划分,而与结构变体模式无关。使用我们自主开发的软件 baldur 对长读测序数据进行分析,该软件可以有效地检测到低于 1%的单核苷酸异质性,确定相位,并准确区分复杂的缺失。我们的工作流程是研究 mtDNA 变异的工具,将加速线粒体研究。