Suppr超能文献

双束缚生物纳米孔以高保真度解析同核苷酸序列。

A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity.

机构信息

Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.

Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.

出版信息

Nat Biotechnol. 2020 Dec;38(12):1415-1420. doi: 10.1038/s41587-020-0570-8. Epub 2020 Jul 6.

Abstract

Single-molecule long-read DNA sequencing with biological nanopores is fast and high-throughput but suffers reduced accuracy in homonucleotide stretches. We now combine the CsgG nanopore with the 35-residue N-terminal region of its extracellular interaction partner CsgF to produce a dual-constriction pore with improved signal and base-calling accuracy for homopolymer regions. The electron cryo-microscopy structure of CsgG in complex with full-length CsgF shows that the 33 N-terminal residues of CsgF bind inside the β-barrel of the pore, forming a defined second constriction. In complexes of CsgG bound to a 35-residue CsgF constriction peptide, the second constriction is separated from the primary constriction by ~25 Å. We find that both constrictions contribute to electrical signal modulation during single-stranded DNA translocation. DNA sequencing using a prototype CsgG-CsgF protein pore with two constrictions improved single-read accuracy by 25 to 70% in homopolymers up to 9 nucleotides long.

摘要

利用生物纳米孔进行单分子长读 DNA 测序速度快、通量高,但在同聚核苷酸延伸区域的准确性降低。我们现在将 CsgG 纳米孔与其细胞外相互作用伙伴 CsgF 的 35 个残基 N 端区域相结合,产生了一种具有改进信号和碱基调用准确性的双限制孔,用于同聚体区域。CsgG 与全长 CsgF 复合的电子 cryo-microscopy 结构表明,CsgF 的 33 个 N 端残基结合在孔的 β-桶内,形成一个明确的第二个限制。在与 35 个残基 CsgF 限制肽结合的 CsgG 复合物中,第二个限制与第一个限制之间的距离为~25Å。我们发现,两个限制都有助于单链 DNA 转运过程中的电信号调制。使用具有两个限制的 CsgG-CsgF 蛋白孔进行 DNA 测序,在长达 9 个核苷酸的同聚物中,单读准确性提高了 25%至 70%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66c9/7610451/d4ce3cd0dd28/EMS118407-f005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验