Suppr超能文献

检测和减轻 COVID-19 感染的同时浪潮。

Detecting and mitigating simultaneous waves of COVID-19 infections.

机构信息

Lally School of Management, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

Department of Business Administration, Gies College of Business, University of Illinois Urbana-Champaign, Urbana, IL, 61820, USA.

出版信息

Sci Rep. 2022 Oct 6;12(1):16727. doi: 10.1038/s41598-022-20224-5.

Abstract

The sudden spread of COVID-19 infections in a region can catch its healthcare system by surprise. Can one anticipate such a spread and allow healthcare administrators to prepare for a surge a priori? We posit that the answer lies in distinguishing between two types of waves in epidemic dynamics. The first kind resembles a spatio-temporal diffusion pattern. Its gradual spread allows administrators to marshal resources to combat the epidemic. The second kind is caused by super-spreader events, which provide shocks to the disease propagation dynamics. Such shocks simultaneously affect a large geographical region and leave little time for the healthcare system to respond. We use time-series analysis and epidemiological model estimation to detect and react to such simultaneous waves using COVID-19 data from the time when the B.1.617.2 (Delta) variant of the SARS-CoV-2 virus dominated the spread. We first analyze India's second wave from April to May 2021 that overwhelmed the Indian healthcare system. Then, we analyze data of COVID-19 infections in the United States (US) and countries with a high and low Indian diaspora. We identify the Kumbh Mela festival as the likely super-spreader event, the exogenous shock, behind India's second wave. We show that a multi-area compartmental epidemiological model does not fit such shock-induced disease dynamics well, in contrast to its performance with diffusion-type spread. The insufficient fit to infection data can be detected in the early stages of a shock-wave propagation and can be used as an early warning sign, providing valuable time for a planned healthcare response. Our analysis of COVID-19 infections in the US reveals that simultaneous waves due to super-spreader events in one country (India) can lead to simultaneous waves in other places. The US wave in the summer of 2021 does not fit a diffusion pattern either. We postulate that international travels from India may have caused this wave. To support that hypothesis, we demonstrate that countries with a high Indian diaspora exhibit infection growth soon after India's second wave, compared to countries with a low Indian diaspora. Based on our data analysis, we provide concrete policy recommendations at various stages of a simultaneous wave, including how to avoid it, how to detect it quickly after a potential super-spreader event occurs, and how to proactively contain its spread.

摘要

新冠疫情在一个地区的突然传播可能会让其医疗系统措手不及。能否预测这种传播,让医疗保健管理人员事先为疫情激增做好准备?我们认为,答案在于区分疫情动态中的两种波。第一种类似于时空扩散模式。它的逐渐传播使管理人员能够调集资源来对抗疫情。第二种是由超级传播者事件引起的,这些事件会对疾病传播动态造成冲击。这种冲击会同时影响到大片地理区域,使医疗系统几乎没有时间做出反应。我们使用时间序列分析和流行病学模型估计,从 2021 年 B.1.617.2(Delta)变异株主导传播开始,利用来自 COVID-19 的数据来检测和应对这种同时发生的波。我们首先分析了 2021 年 4 月至 5 月期间使印度医疗系统不堪重负的印度第二波疫情。然后,我们分析了美国(US)和有大量及少量印度侨民的国家的 COVID-19 感染数据。我们将大壶节(Kumbh Mela)节日确定为印度第二波疫情背后的可能超级传播者事件,即外生冲击。我们表明,多区域 compartmental 传染病模型不能很好地拟合这种冲击引起的疾病动态,与扩散型传播相比表现不佳。在冲击波传播的早期阶段,可以检测到对感染数据的拟合不足,并可以用作预警信号,为有计划的医疗应对提供宝贵的时间。我们对美国 COVID-19 感染的分析表明,一个国家(印度)的超级传播者事件引起的同时波可能会导致其他地方出现同时波。2021 年夏天的美国波也不符合扩散模式。我们推测,来自印度的国际旅行可能导致了这一波疫情。为了支持这一假设,我们表明,与印度侨民较少的国家相比,印度侨民较多的国家在印度第二波疫情之后很快就会出现感染增长。基于我们的数据分析,我们在同时波的各个阶段提供了具体的政策建议,包括如何避免它,在潜在的超级传播者事件发生后如何快速发现它,以及如何主动控制其传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f00/9537162/1adcd889775d/41598_2022_20224_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验