Tian Kaixuan, Feng Ruiqing, Wang Xiaoqing, Wu Xiangyu, Li Long, Liu Wei, Wu Rongde
Department of Pediatric Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei; Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, People's Republic of China.
J Cancer Res Ther. 2022 Sep;18(5):1409-1416. doi: 10.4103/jcrt.jcrt_3_22.
Tumor-associated macrophages (TAMs) are vital to the tumor microenvironment. They are classified as antitumor M1-type or protumor M2-type macrophages. M2-type macrophages accumulate in the tumor stroma and are related to poor prognosis. Iron oxide nanoparticles are used as drug delivery vehicles because of the structure of carboxyl groups on their surface and their ability to be easily phagocytosed by macrophages.
The signal transducer and activator of transcription 6 (STAT6) signaling pathway controls M2 macrophage polarization, but the STAT6 signaling pathway inhibitor AS1517499 lacks efficient targeting in vivo. Thus, our study aimed to block the polarization of TAMs to M2-type macrophages.
We used ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) as drug carriers coated with the STAT6 signaling pathway inhibitors AS1517499 and CD163 monoclonal antibodies to synthesize the targeted nanocomplex AS1517499-USPION-CD163 utilizing the carbodiimide method. Then, we determined its physicochemical properties, including hydrodynamic size distribution, ultrastructure, iron concentration, protein content and activity of the CD163 monoclonal antibody, AS1517499 content, and selectivity for M2-type macrophages, and its biological applications.
The hydrodynamic size distribution was stable (average size = 95.37 nm). Regarding biological applications, the targeted nanocomplex selectively inhibited M2-type macrophages.
The targeted nanocomplex AS1517499-USPION-CD163 showed high selectivity for M2-type macrophages. Therefore, iron oxide nanoparticles targeting TAMs may be an effective approach to TAM therapy.
肿瘤相关巨噬细胞(TAM)对肿瘤微环境至关重要。它们被分类为抗肿瘤的M1型或促肿瘤的M2型巨噬细胞。M2型巨噬细胞在肿瘤基质中积聚,与预后不良有关。氧化铁纳米颗粒因其表面羧基结构以及易被巨噬细胞吞噬的能力而被用作药物递送载体。
信号转导和转录激活因子6(STAT6)信号通路控制M2巨噬细胞极化,但STAT6信号通路抑制剂AS1517499在体内缺乏有效的靶向性。因此,我们的研究旨在阻断TAM向M2型巨噬细胞的极化。
我们使用超小超顺磁性氧化铁纳米颗粒(USPION)作为药物载体,包被STAT6信号通路抑制剂AS1517499和CD163单克隆抗体,利用碳二亚胺法合成靶向纳米复合物AS1517499-USPION-CD163。然后,我们测定了其理化性质,包括流体动力学尺寸分布、超微结构、铁浓度、蛋白质含量和CD163单克隆抗体的活性、AS1517499含量以及对M2型巨噬细胞的选择性及其生物学应用。
流体动力学尺寸分布稳定(平均尺寸=95.37nm)。在生物学应用方面,靶向纳米复合物选择性抑制M2型巨噬细胞。
靶向纳米复合物AS1517499-USPION-CD163对M2型巨噬细胞具有高选择性。因此,靶向TAM的氧化铁纳米颗粒可能是TAM治疗的有效方法。