School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia.
Institut Curie, Paris Sciences et Lettres Research University, Mechanics and Genetics of Embryonic and Tumoral Development Group, Paris, France.
J Tissue Eng Regen Med. 2022 Dec;16(12):1149-1162. doi: 10.1002/term.3353. Epub 2022 Oct 7.
Biofilm formation on an implant surface is most commonly caused by the human pathogenic bacteria Staphylococcus aureus, which can lead to implant related infections and failure. It is a major problem for both implantable orthopedic and maxillofacial devices. The current antibiotic treatments are typically delivered orally or in an injectable form. They are not highly effective in preventing or removing biofilms, and they increase the risk of antibiotic resistance of bacteria and have a dose-dependent negative biological effect on human cells. Our aim was to improve current treatments via a localized and controlled antibiotic delivery-based implant coating system to deliver the antibiotic, gentamicin (Gm). The coating contains coral skeleton derived hydroxyapatite powders (HAp) that act as antibiotic carrier particles and have a biodegradable poly-lactic acid (PLA) thin film matrix. The system is designed to prevent implant related infections while avoiding the deleterious effects of high concentration antibiotics in implants on local cells including primary human adipose derived stem cells (ADSCs). Testing undertaken in this study measured the rate of S. aureus biofilm formation and determined the growth rate and proliferation of ADSCs. After 24 h, S. aureus biofilm formation and the percentage of live cells found on the surfaces of all 5%-30% (w/w) PLA-Gm-(HAp-Gm) coated Ti6Al4V implants was lower than the control samples. Furthermore, Ti6Al4V implants coated with up to 10% (w/w) PLA-Gm-(HAp-Gm) did not have noticeable Gm related adverse effect on ADSCs, as assessed by morphological and surface attachment analyses. These results support the use and application of the antibacterial PLA-Gm-(HAp-Gm) thin film coating design for implants, as an antibiotic release control mechanism to prevent implant-related infections.
生物膜在植入物表面的形成通常是由人类病原菌金黄色葡萄球菌引起的,这可能导致植入物相关感染和失败。这是植入式骨科和颌面设备的一个主要问题。目前的抗生素治疗通常通过口服或注射的方式进行。它们在预防或清除生物膜方面效果不佳,并且增加了细菌对抗生素产生耐药性的风险,并且对人类细胞具有剂量依赖性的负生物学效应。我们的目的是通过局部和控制抗生素递送的植入物涂层系统来改善当前的治疗方法,以递送抗生素庆大霉素(Gm)。该涂层包含珊瑚骨架衍生的羟基磷灰石粉末(HAp),作为抗生素载体颗粒,并具有可生物降解的聚乳酸(PLA)薄膜基质。该系统旨在预防植入物相关感染,同时避免植入物中高浓度抗生素对包括原代人脂肪来源干细胞(ADSCs)在内的局部细胞的有害影响。本研究中的测试测量了金黄色葡萄球菌生物膜形成的速度,并确定了 ADSCs 的生长速度和增殖。24 小时后,所有 5%-30%(w/w)PLA-Gm-(HAp-Gm)涂层 Ti6Al4V 植入物表面的金黄色葡萄球菌生物膜形成和活细胞百分比均低于对照样品。此外,高达 10%(w/w)PLA-Gm-(HAp-Gm)涂层的 Ti6Al4V 植入物对 ADSCs 没有明显的 Gm 相关不良反应,这可以通过形态学和表面附着分析来评估。这些结果支持使用和应用具有抗菌作用的 PLA-Gm-(HAp-Gm)薄膜涂层设计用于植入物,作为抗生素释放控制机制以预防植入物相关感染。