Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China.
Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany.
Chemistry. 2023 Jan 27;29(6):e202202834. doi: 10.1002/chem.202202834. Epub 2022 Nov 27.
Recent years have witnessed a boom of machine learning (ML) applications in chemistry, which reveals the potential of data-driven prediction of synthesis performance. Digitalization and ML modelling are the key strategies to fully exploit the unique potential within the synergistic interplay between experimental data and the robust prediction of performance and selectivity. A series of exciting studies have demonstrated the importance of chemical knowledge implementation in ML, which improves the model's capability for making predictions that are challenging and often go beyond the abilities of human beings. This Minireview summarizes the cutting-edge embedding techniques and model designs in synthetic performance prediction, elaborating how chemical knowledge can be incorporated into machine learning until June 2022. By merging organic synthesis tactics and chemical informatics, we hope this Review can provide a guide map and intrigue chemists to revisit the digitalization and computerization of organic chemistry principles.
近年来,机器学习(ML)在化学中的应用蓬勃发展,这揭示了数据驱动的合成性能预测的潜力。数字化和 ML 建模是充分利用协同作用中实验数据和性能与选择性稳健预测之间独特潜力的关键策略。一系列令人兴奋的研究表明,在 ML 中实施化学知识的重要性,这提高了模型进行预测的能力,这些预测具有挑战性,并且常常超出了人类的能力。这篇综述总结了合成性能预测中最新的嵌入技术和模型设计,详细阐述了如何将化学知识纳入机器学习,截至 2022 年 6 月。通过将有机合成策略和化学信息学相结合,我们希望这篇综述能够提供一张指导图,并激发化学家重新审视有机化学原理的数字化和计算机化。