Certara QSP-UK, Canterbury Innovation Centre, University Road, Canterbury, CT2 7FG, UK.
Kyowa-Kirin, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
J Pharmacokinet Pharmacodyn. 2022 Dec;49(6):593-606. doi: 10.1007/s10928-022-09825-9. Epub 2022 Oct 9.
The clinical impact of therapeutic interventions in Parkinson's disease is often measured as a reduction in OFF-time when the beneficial effects of the standard-of-care L-DOPA formulations wanes off. We investigated the pharmacodynamic interactions of augmentation therapy to standard-of-care using a quantitative systems pharmacology (QSP) model of the basal ganglia motor circuit, essentially a computer model of neuronal firing in the different subregions with anatomically informed connectivity, cell-specific expression of 17 different G-protein coupled receptors and corresponding coupling to voltage-gated ion channel effector proteins based on experimentally observed intracellular signaling. The calculated beta/gamma (b/g) power spectrum of the local field potentials in the subthalamic nucleus was previously calibrated on the clinically relevant Unified Parkinson's Disease Rating Scale (UPDRS). When combining this QSP model with PK modeling of different formulations of L-DOPA, we calculated the b/g fluctuations over a 16 h awake period and used a weighted distance from a specific threshold to determine the cumulative liability of OFF-Time. Prediction of OFF-time with clinical observations of different L-DOPA formulations showed a significant correlation. Simulations show that augmentation with the adenosine A antagonist preladenant reduces OFF-time with 6 min for carbidopa/levodopa 950 mg 5-times daily to 37 min for 100 mg L-DOPA - 3 or 5 times daily. Exploring delays between preladenant and L-DOPA intake did not improve the outcome. Hypothetical A antagonists with an ideal PK and pharmacology profile can achieve OFF-Time reductions ranging from 9.5 min with DuoDopa to 55 min with low dose L-DOPA formulations. Combination of the QSP model with PK modeling can predict the anticipated OFF-Time reduction of novel A2A antagonists with standard of care. With the large number of GPCR in the model, this combination can support both the design of clinical trials with new therapeutic agents and the optimization of combination therapy in clinical practice.
治疗干预帕金森病的临床效果通常以标准护理左旋多巴制剂疗效消退时的“关期”减少来衡量。我们使用基底神经节运动回路的定量系统药理学 (QSP) 模型研究了增效治疗与标准护理的药效学相互作用,该模型本质上是不同亚区神经元放电的计算机模型,具有解剖学上已知的连接、17 种不同 G 蛋白偶联受体的细胞特异性表达以及基于观察到的细胞内信号的相应电压门控离子通道效应蛋白偶联。先前根据临床相关统一帕金森病评定量表 (UPDRS) 对丘脑底核局部场电位的β/γ(b/g)功率谱进行了校准。当将该 QSP 模型与不同左旋多巴制剂的 PK 建模相结合时,我们计算了 16 小时清醒期内的 b/g 波动,并使用特定阈值的加权距离来确定“关期”的累积负担。不同左旋多巴制剂的临床观察预测“关期”显示出显著相关性。模拟表明,用腺苷 A 拮抗剂普莱登坦增效,将卡比多巴/左旋多巴 950mg,每日 5 次的“关期”从 6 分钟减少到 100mg 左旋多巴的 3 或 5 次每日的 37 分钟。探索普莱登坦和左旋多巴摄入之间的延迟并没有改善结果。具有理想 PK 和药理学特征的假设 A 拮抗剂可以实现从 DuoDopa 的 9.5 分钟到低剂量左旋多巴制剂的 55 分钟的“关期”减少。将 QSP 模型与 PK 建模相结合可以预测新型 A2A 拮抗剂与标准护理的预期“关期”减少。由于模型中存在大量 GPCR,这种组合既可以支持新治疗剂临床试验的设计,也可以支持临床实践中联合治疗的优化。