Suppr超能文献

载壳聚糖颗粒活性炭对全氟烷酸的吸附:纳米气泡的作用。

Adsorption of perfluoroalkyl acids on granular activated carbon supported chitosan: Role of nanobubbles.

机构信息

College of Environment, Hohai University, Nanjing, 210098, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China.

College of Environment, Hohai University, Nanjing, 210098, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China.

出版信息

Chemosphere. 2022 Dec;309(Pt 1):136733. doi: 10.1016/j.chemosphere.2022.136733. Epub 2022 Oct 6.

Abstract

The safety threat posed by Perfluoroalkyl acids (PFAAs) in drinking water is a growing concern. In this study, we loaded chitosan (CS) on granular activated carbon (GAC) to adsorb PFAAs, and we explored the role of nanobubbles in the adsorption process through experiments and density functional theory (DFT) calculations. Compared with GAC, we found that the use of the composite adsorbent (CS/GAC) enhanced the removal rate of perfluorooctanoic acid by 136% with the assistance of nanobubbles. PFAAs with different chain lengths have different adsorption mechanisms owing to surface activity differences. PFAAs with longer C-F chains can be directly enriched with amino groups on the CS or air-water interface on composite adsorbents. Additionally, PFAAs can be enriched with nanobubbles in solution to form nanobubble-PFAA colloids, which are adsorbed by protonated amino groups on CS through electrostatic interactions. We found that PFAAs with shorter C-F chains are less affected by nanobubbles, and DFT calculations indicated that the adsorption of short-chain PFAAs is mainly affected by electrostatic interactions. We also proved that the electrostatic interactions between CS and PFAAs are mainly derived from the abundant protonated amino groups.

摘要

饮用水中全氟烷基酸 (PFAAs) 带来的安全威胁日益受到关注。在这项研究中,我们将壳聚糖 (CS) 负载到颗粒活性炭 (GAC) 上以吸附 PFAAs,并通过实验和密度泛函理论 (DFT) 计算探索了纳米气泡在吸附过程中的作用。与 GAC 相比,我们发现复合吸附剂 (CS/GAC) 在纳米气泡的辅助下,将全氟辛酸的去除率提高了 136%。由于表面活性的差异,不同链长的 PFAAs 具有不同的吸附机制。具有较长 C-F 链的 PFAAs 可以直接在复合吸附剂上的 CS 或气-水界面上被氨基富集。此外,PFAAs 可以在溶液中被纳米气泡富集,形成纳米气泡-PFAA 胶体,通过静电相互作用被 CS 上的质子化氨基吸附。我们发现,具有较短 C-F 链的 PFAAs 受纳米气泡的影响较小,DFT 计算表明,短链 PFAAs 的吸附主要受静电相互作用的影响。我们还证明了 CS 和 PFAAs 之间的静电相互作用主要来自于丰富的质子化氨基。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验