Suppr超能文献

内胚层质外体屏障与中生旱生禾本科植物的渗透耐受性有关。

Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass .

作者信息

Liu Xin, Wang Ping, An Yongping, Wang Chun-Mei, Hao Yanbo, Zhou Yue, Zhou Qingping, Wang Pei

机构信息

Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.

National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

出版信息

Front Plant Sci. 2022 Sep 23;13:1007494. doi: 10.3389/fpls.2022.1007494. eCollection 2022.

Abstract

Drought is the most serious adversity faced by agriculture and animal husbandry industries. One strategy that plants use to adapt to water deficits is modifying the root growth and architecture. Root endodermis has cell walls reinforced with apoplastic barriers formed by the Casparian strip (CS) and suberin lamellae (SL) deposits, regulates radial nutrient transport and protects the vascular cylinder from abiotic threats. is an economically important meso-xerophytic forage grass, characterized by high nutritional quality and strong environmental adaptability. The purpose of this study was to evaluate the drought tolerance of genotypes and investigate the root structural adaptation mechanism of drought-tolerant genotypes' responding to drought. Specifically, a drought tolerant (DT) and drought sensitive (DS) genotype were screened out from 52 genotypes. DT showed less apoplastic bypass flow of water and solutes than DS under control conditions, as determined with a hydraulic conductivity measurement system and an apoplastic fluorescent tracer, specifically PTS trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). In addition, DT accumulated less Na, Mg, Mn, and Zn and more Ni, Cu, and Al than DS, regardless of osmotic stress. Further study showed more suberin deposition in DT than in DS, which could be induced by osmotic stress in both. Accordingly, the CS and SL were deposited closer to the root tip in DT than in DS. However, osmotic stress induced their deposition closer to the root tips in DS, while likely increasing the thickness of the CS and SL in DT. The stronger and earlier formation of endodermal barriers may determine the radial transport pathways of water and solutes, and contribute to balance growth and drought response in . These results could help us better understand how altered endodermal apoplastic barriers in roots regulate water and mineral nutrient transport in plants that have adapted to drought environments. Moreover, the current findings will aid in improving future breeding programs to develop drought-tolerant grass or crop cultivars.

摘要

干旱是农牧业面临的最严重逆境。植物适应水分亏缺的一种策略是改变根系生长和结构。根内皮层具有由凯氏带(CS)和栓质化层(SL)沉积物形成的质外体屏障加强的细胞壁,调节径向养分运输并保护维管束免受非生物胁迫。[植物名称]是一种具有重要经济价值的中生旱生饲草,具有高营养品质和强环境适应性。本研究的目的是评估[植物名称]基因型的耐旱性,并研究耐旱基因型对干旱响应的根系结构适应机制。具体而言,从52个[植物名称]基因型中筛选出一个耐旱(DT)和一个干旱敏感(DS)基因型。在对照条件下,通过水力传导率测量系统和质外体荧光示踪剂,特别是PTS三钠-8-羟基-1,3,6-芘三磺酸(PTS)测定,DT显示的水分和溶质的质外体旁路流量比DS少。此外,无论渗透胁迫如何,DT积累的钠、镁、锰和锌比DS少,而镍、铜和铝比DS多。进一步研究表明,DT中的栓质沉积比DS多,二者均可由渗透胁迫诱导。因此,DT中CS和SL比DS更靠近根尖沉积。然而,渗透胁迫在DS中诱导它们更靠近根尖沉积,而可能增加DT中CS和SL的厚度。内皮层屏障更强和更早的形成可能决定水分和溶质的径向运输途径,并有助于[植物名称]的生长和干旱响应平衡。这些结果可以帮助我们更好地理解根系中内皮层质外体屏障的改变如何调节适应干旱环境的植物中的水分和矿质养分运输。此外,目前的研究结果将有助于改进未来的育种计划,以培育耐旱牧草或作物品种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72eb/9539332/b3e7a63101a3/fpls-13-1007494-g001.jpg

相似文献

1
Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass .
Front Plant Sci. 2022 Sep 23;13:1007494. doi: 10.3389/fpls.2022.1007494. eCollection 2022.
3
Water uptake by roots: effects of water deficit.
J Exp Bot. 2000 Sep;51(350):1531-42. doi: 10.1093/jexbot/51.350.1531.
5
Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers.
Curr Biol. 2017 Mar 6;27(5):758-765. doi: 10.1016/j.cub.2017.01.030. Epub 2017 Feb 23.
6
Physiological roles of Casparian strips and suberin in the transport of water and solutes.
New Phytol. 2021 Dec;232(6):2295-2307. doi: 10.1111/nph.17765. Epub 2021 Oct 21.
8
The exodermis: a variable apoplastic barrier.
J Exp Bot. 2001 Dec;52(365):2245-64. doi: 10.1093/jexbot/52.365.2245.
10
Root endodermal barrier system contributes to defence against plant-parasitic cyst and root-knot nematodes.
Plant J. 2019 Oct;100(2):221-236. doi: 10.1111/tpj.14459. Epub 2019 Sep 3.

本文引用的文献

1
Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response.
Plant Physiol. 2022 Sep 28;190(2):1165-1181. doi: 10.1093/plphys/kiac298.
2
Natural variation in root suberization is associated with local environment in Arabidopsis thaliana.
New Phytol. 2022 Oct;236(2):385-398. doi: 10.1111/nph.18341. Epub 2022 Jul 13.
3
Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis.
Plant Cell. 2022 Jul 30;34(8):2948-2968. doi: 10.1093/plcell/koac140.
4
Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity.
J Plant Physiol. 2022 Jun;273:153708. doi: 10.1016/j.jplph.2022.153708. Epub 2022 Apr 28.
5
A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize.
Nat Commun. 2022 Apr 25;13(1):2222. doi: 10.1038/s41467-022-29809-0.
6
Root Suberin Plays Important Roles in Reducing Water Loss and Sodium Uptake in .
Metabolites. 2021 Oct 27;11(11):735. doi: 10.3390/metabo11110735.
7
Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors.
Proc Natl Acad Sci U S A. 2021 Sep 28;118(39). doi: 10.1073/pnas.2101730118.
8
Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species.
Sci Total Environ. 2021 Jul 20;779:146466. doi: 10.1016/j.scitotenv.2021.146466. Epub 2021 Mar 16.
9
GDSL-domain proteins have key roles in suberin polymerization and degradation.
Nat Plants. 2021 Mar;7(3):353-364. doi: 10.1038/s41477-021-00862-9. Epub 2021 Mar 8.
10
Drought activates MYB41 orthologs and induces suberization of grapevine fine roots.
Plant Direct. 2020 Nov 22;4(11):e00278. doi: 10.1002/pld3.278. eCollection 2020 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验