Suppr超能文献

Ag-AgO 修饰的多壁碳纳米管/NiCoAl 水滑石传感器用于痕量亚硝酸盐的定量分析。

Ag-AgO decorated multi-walled carbon nanotubes/NiCoAl hydrotalcite sensor for trace nitrite quantification.

机构信息

College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China.

出版信息

Mikrochim Acta. 2022 Oct 10;189(11):411. doi: 10.1007/s00604-022-05513-0.

Abstract

Ag-AgO-decorated multiwall carbon nanotube/NiCoAl-hydrotalcite (CNT/LDH-Ag) composites were designed and synthesized for nitrite quantification. The materials were characterized by various techniques, and their electrochemical NO detection performances investigated using amperometric and differential pulse voltammetry (DPV) techniques. The Ag-AgO nanoparticles (NPs) were anchored on the surface of the CNT/LDH-Ag composites. At a suitable amount of the Ag-AgO loading, the Ag-AgO NPs with small particle size were distributed evenly on the CNT/LDH surface, increasing the surface area of the composites. The optimal CNT/LDH-Ag composite exhibited a high electrochemical activity for NO oxidation in pH 7.0. Furthermore, the optimal CNT/LDH-Ag composite was fabricated for trace NO quantification. The proposed sensor displayed a high sensitivity (0.0960 μA·μM·cm) and fast response (< 3 s) toward NO in a wide linear range from 0.250 μmol·L to 4.00 mmol·L with a low detection limit of 0.0590 μmol·L(S/N = 3). The sensor provided an outstanding analytical performance with a desirable recovery (95.3 ~ 107%, RSD < 1.05%) in real sample. As a result, the proposed sensor can be used for the real-time quantification of trace NO in the biological, food, and environmental fields.

摘要

Ag-AgO 修饰的多壁碳纳米管/镍钴铝水滑石 (CNT/LDH-Ag) 复合材料被设计并合成用于亚硝酸盐定量。通过各种技术对材料进行了表征,并通过安培和差分脉冲伏安法 (DPV) 技术研究了它们的电化学 NO 检测性能。Ag-AgO 纳米颗粒 (NPs) 被锚定在 CNT/LDH-Ag 复合材料的表面上。在合适的 Ag-AgO 负载量下,具有小粒径的 Ag-AgO NPs 均匀分布在 CNT/LDH 表面上,增加了复合材料的表面积。最佳 CNT/LDH-Ag 复合材料在 pH 7.0 下对 NO 氧化具有高电化学活性。此外,最佳 CNT/LDH-Ag 复合材料用于痕量 NO 的定量。所提出的传感器对 NO 具有高灵敏度 (0.0960 μA·μM·cm) 和快速响应 (<3 s),在 0.250 μmol·L 至 4.00 mmol·L 的宽线性范围内,检测限低至 0.0590 μmol·L(S/N = 3)。该传感器在实际样品中具有出色的分析性能,回收率理想 (95.3%~107%,RSD < 1.05%)。因此,该传感器可用于生物、食品和环境领域中痕量 NO 的实时定量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验