State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
University of Chinese Academy of Sciences, Beijing, 100101, China.
Neurosci Bull. 2023 Apr;39(4):645-658. doi: 10.1007/s12264-022-00956-0. Epub 2022 Oct 10.
To understand how the nervous system develops from a small pool of progenitors during early embryonic development, it is fundamentally important to identify the diversity of neuronal subtypes, decode the origin of neuronal diversity, and uncover the principles governing neuronal specification across different regions. Recent single-cell analyses have systematically identified neuronal diversity at unprecedented scale and speed, leaving the deconstruction of spatiotemporal mechanisms for generating neuronal diversity an imperative and paramount challenge. In this review, we highlight three distinct strategies deployed by neural progenitors to produce diverse neuronal subtypes, including predetermined, stochastic, and cascade diversifying models, and elaborate how these strategies are implemented in distinct regions such as the neocortex, spinal cord, retina, and hypothalamus. Importantly, the identity of neural progenitors is defined by their spatial position and temporal patterning factors, and each type of progenitor cell gives rise to distinguishable cohorts of neuronal subtypes. Microenvironmental cues, spontaneous activity, and connectional pattern further reshape and diversify the fate of unspecialized neurons in particular regions. The illumination of how neuronal diversity is generated will pave the way for producing specific brain organoids to model human disease and desired neuronal subtypes for cell therapy, as well as understanding the organization of functional neural circuits and the evolution of the nervous system.
为了理解神经系统在早期胚胎发育过程中是如何从一小部分祖细胞中发育而来的,从根本上重要的是要确定神经元亚型的多样性,解码神经元多样性的起源,并揭示不同区域控制神经元特化的原则。最近的单细胞分析已经以空前的规模和速度系统地确定了神经元的多样性,这使得对产生神经元多样性的时空机制进行解构成为当务之急和首要挑战。在这篇综述中,我们强调了神经祖细胞用来产生不同神经元亚型的三种不同策略,包括预定的、随机的和级联多样化模型,并详细阐述了这些策略是如何在不同的区域(如大脑皮层、脊髓、视网膜和下丘脑)中实施的。重要的是,神经祖细胞的身份由其空间位置和时间模式决定,每一种祖细胞都会产生可区分的神经元亚型群体。微环境线索、自发活动和连接模式进一步塑造和多样化特定区域中未特化神经元的命运。阐明神经元多样性的产生方式将为产生特定的脑类器官以模拟人类疾病和所需的神经元亚型用于细胞治疗铺平道路,同时也为理解功能神经回路的组织和神经系统的进化提供了基础。