Carter-Fenk Kevin, Cunha Leonardo A, Arias-Martinez Juan E, Head-Gordon Martin
Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States.
J Phys Chem Lett. 2022 Oct 20;13(41):9664-9672. doi: 10.1021/acs.jpclett.2c02564. Epub 2022 Oct 10.
The lack of particle-hole attraction and orbital relaxation within time-dependent density functional theory (TDDFT) lead to extreme errors in the prediction of K-edge X-ray absorption spectra (XAS). We derive a linear-response formalism that uses optimized orbitals of the - 1-electron system as the reference, building orbital relaxation and a proper hole into the initial density. Our approach is an exact generalization of the static-exchange approximation that ameliorates the particle-hole interaction error associated with the adiabatic approximation and reduces errors in TDDFT XAS by orders of magnitude. With a statistical performance of just 0.5 eV root-mean-square error and the same computational scaling as TDDFT under the core-valence separation approximation, we anticipate that this approach will be of great utility in XAS calculations of large systems.
含时密度泛函理论(TDDFT)中粒子-空穴吸引和轨道弛豫的缺失,导致在预测K边X射线吸收光谱(XAS)时出现极大误差。我们推导了一种线性响应形式,它使用N - 1电子体系的优化轨道作为参考,在初始密度中构建轨道弛豫和一个适当的空穴。我们的方法是静态交换近似的精确推广,它改善了与绝热近似相关的粒子-空穴相互作用误差,并将TDDFT XAS中的误差降低了几个数量级。在芯价分离近似下,该方法的统计性能仅为0.5 eV的均方根误差,且具有与TDDFT相同的计算标度,我们预计这种方法在大体系的XAS计算中将具有很大的实用性。