Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States.
Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.
J Phys Chem A. 2023 May 11;127(18):4103-4114. doi: 10.1021/acs.jpca.3c01414. Epub 2023 Apr 27.
In typical carbonyl-containing molecules, bond dissociation events follow initial excitation to states. However, in acetyl iodide, the iodine atom gives rise to electronic states with mixed and character, leading to complex excited-state dynamics, ultimately resulting in dissociation. Using ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy and quantum chemical calculations, we present an investigation of the primary photodissociation dynamics of acetyl iodide via time-resolved spectroscopy of core-to-valence transitions of the I atom after 266 nm excitation. The probed I 4d-to-valence transitions show features that evolve on sub-100-fs time scales, reporting on excited-state wavepacket evolution during dissociation. These features subsequently evolve to yield spectral signatures corresponding to free iodine atoms in their spin-orbit ground and excited states with a branching ratio of 1.1:1 following dissociation of the C-I bond. Calculations of the valence excitation spectrum via equation-of-motion coupled cluster with single and double substitutions (EOM-CCSD) show that initial excited states are of spin-mixed character. From the initially pumped spin-mixed state, we use a combination of time-dependent density functional theory (TDDFT)-driven nonadiabatic molecular dynamics and EOM-CCSD calculations of the N edge to reveal a sharp inflection point in the transient XUV signal that corresponds to rapid C-I homolysis. By examining the molecular orbitals involved in the core-level excitations at and around this inflection point, we are able to piece together a detailed picture of C-I bond photolysis in which → σ* transitions give way to → excitations as the bond dissociates. We also report theoretical predictions of short-lived, weak 4 → 5 transitions in acetyl iodide, validated by weak bleaching in the experimental transient XUV spectra. This joint experimental-theoretical effort has thus unraveled the detailed electronic structure and dynamics of a strongly spin-orbit coupled system.
在典型的含羰基分子中,键离解事件遵循初始激发到 态。然而,在乙酰碘中,碘原子产生具有混合 和 特征的电子态,导致复杂的激发态动力学,最终导致解离。我们使用超快极紫外(XUV)瞬态吸收光谱和量子化学计算,通过对 266nm 激发后 I 原子的芯到价跃迁的时间分辨光谱,研究了乙酰碘的初级光解动力学。探测到的 I 4d 到价带跃迁具有在亚 100fs 时间尺度上演变的特征,报告了解离过程中激发态波包的演化。这些特征随后进一步演化,产生与 C-I 键解离后其自旋轨道基态和激发态的自由碘原子相对应的光谱特征,分支比为 1.1:1。通过方程运动耦合簇加上单和双取代(EOM-CCSD)计算的价激发光谱表明,初始激发态具有自旋混合特征。从最初泵浦的自旋混合态开始,我们使用时变密度泛函理论(TDDFT)驱动的非绝热分子动力学和 N 边 EOM-CCSD 计算的组合,揭示了瞬态 XUV 信号中的一个急剧拐点,该拐点对应于 C-I 同裂的快速发生。通过检查在该拐点处和周围涉及芯层激发的分子轨道,我们能够拼凑出 C-I 键光解的详细图像,其中 → σ* 跃迁让位于 → 激发,随着键的解离而发生。我们还报告了乙酰碘中短寿命、弱 4 → 5 跃迁的理论预测,实验瞬态 XUV 光谱中的弱漂白验证了这些预测。因此,这项联合实验理论研究揭示了强自旋轨道耦合体系的详细电子结构和动力学。