J Opt Soc Am A Opt Image Sci Vis. 2022 Oct 1;39(10):1929-1938. doi: 10.1364/JOSAA.462923.
In low-dose computed tomography (LDCT) denoising tasks, it is often difficult to balance edge/detail preservation and noise/artifact reduction. To solve this problem, we propose a dual convolutional neural network (CNN) based on edge feature extraction (Ed-DuCNN) for LDCT. Ed-DuCNN consists of two branches. One branch is the edge feature extraction subnet (Edge_Net) that can fully extract the edge details in the image. The other branch is the feature fusion subnet (Fusion_Net) that introduces an attention mechanism to fuse edge features and noisy image features. Specifically, first, shallow edge-specific detail features are extracted by trainable Sobel convolutional blocks and then are integrated into Edge_Net together with the LDCT images to obtain deep edge detail features. Finally, the input image, shallow edge detail, and deep edge detail features are fused in Fusion_Net to generate the final denoised image. The experimental results show that the proposed Ed-DuCNN can achieve competitive performance in terms of quantitative metrics and visual perceptual quality compared with that of state-of-the-art methods.
在低剂量计算机断层扫描(LDCT)去噪任务中,通常很难平衡边缘/细节保留和噪声/伪影减少。为了解决这个问题,我们提出了一种基于边缘特征提取的双卷积神经网络(DuCNN)用于 LDCT,简称 Ed-DuCNN。Ed-DuCNN 由两个分支组成。一个分支是边缘特征提取子网(Edge_Net),可以充分提取图像中的边缘细节。另一个分支是特征融合子网(Fusion_Net),它引入了一种注意力机制来融合边缘特征和噪声图像特征。具体来说,首先,通过可训练的 Sobel 卷积块提取浅层的特定边缘细节特征,然后将其与 LDCT 图像一起集成到 Edge_Net 中,以获得深层的边缘细节特征。最后,在 Fusion_Net 中融合输入图像、浅层边缘细节和深层边缘细节特征,生成最终的去噪图像。实验结果表明,与最先进的方法相比,所提出的 Ed-DuCNN 在定量指标和视觉感知质量方面都能达到竞争性能。