Zhang Ju, Niu Yan, Shangguan Zhibo, Gong Weiwei, Cheng Yun
College of Information Science and Technology, Hangzhou Normal University, Hangzhou, 311121, China.
College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
Comput Biol Med. 2023 Jan;152:106387. doi: 10.1016/j.compbiomed.2022.106387. Epub 2022 Dec 1.
Reducing the radiation dose may lead to increased noise in medical computed tomography (CT), which can adversely affect the radiologists' judgment. Many efforts have been devoted to the denoising of low-dose CT (LDCT) images. However, it is often observed that denoised medical images usually lose some important clinical lesion edge information and may affect doctors' clinical diagnosis. For a denoising neural network, it is expected that the neural network can well retain the detailed features and make the network more anthropomorphic, and to simulate the attention mechanism of observation, being a valuable feature of the thinking process of human brain. Based on U-network (U-Net) and multi-attention mechanism, a novel denoising method for medical CT images is proposed in this study. To obtain different feature information in CT images, three attention modules are proposed in our method. The local attention module is developed to localize the surrounding information of the feature map and calculate each pixel from the context extracted from the feature map. The multi-feature channel attention module can automatically learn and extract features, suppress some invalid information and add different weights to each channel in the feature map according to different tasks. The hierarchical attention module allows the deep neural network to extract a large amount of feature information. This study also introduces an enhanced learning module to learn and retain the detail information in the image by stacking multi-layer convolution layer, batch normalization (BN) layer and activation function layer to increase the network depth. Experimental studies are conducted, and comparisons with the state-of-the-art networks are made, and the results demonstrate that the developed method can effectively remove the noise in CT images and improve the image quality in the evaluation metrics of peak signal to noise ratio (PSNR) and structural similarity (SSIM). Our method achieved 34.7329 of PSNR and 0.9293 of SSIM for σ = 10 on the QIN_LUNG_CT dataset, and achieved 28.9163 of PSNR and 0.8602 of SSIM on the Mayo Clinic LDCT Grand Challenge dataset.
降低辐射剂量可能会导致医学计算机断层扫描(CT)中的噪声增加,这可能会对放射科医生的判断产生不利影响。许多努力都致力于低剂量CT(LDCT)图像的去噪。然而,人们经常观察到,去噪后的医学图像通常会丢失一些重要的临床病变边缘信息,并且可能会影响医生的临床诊断。对于一个去噪神经网络,期望神经网络能够很好地保留细节特征并使网络更具拟人化,并且模拟观察的注意力机制,这是人类大脑思维过程的一个有价值的特征。基于U型网络(U-Net)和多注意力机制,本研究提出了一种新颖的医学CT图像去噪方法。为了在CT图像中获取不同的特征信息,我们的方法中提出了三个注意力模块。局部注意力模块用于定位特征图的周围信息,并根据从特征图中提取的上下文计算每个像素。多特征通道注意力模块可以自动学习和提取特征,抑制一些无效信息,并根据不同任务为特征图中的每个通道添加不同的权重。分层注意力模块允许深度神经网络提取大量特征信息。本研究还引入了一个增强学习模块,通过堆叠多层卷积层、批量归一化(BN)层和激活函数层来学习和保留图像中的细节信息,以增加网络深度。进行了实验研究,并与最先进的网络进行了比较,结果表明,所开发的方法能够有效地去除CT图像中的噪声,并在峰值信噪比(PSNR)和结构相似性(SSIM)的评估指标中提高图像质量。在QIN_LUNG_CT数据集上,我们的方法在σ = 10时PSNR达到34.7329,SSIM达到0.9293;在梅奥诊所LDCT大挑战数据集上,PSNR达到28.9163,SSIM达到0.8602。